File size: 7,148 Bytes
25a2692
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Allergies"
cohort = "GSE84046"

# Input paths
in_trait_dir = "../DATA/GEO/Allergies"
in_cohort_dir = "../DATA/GEO/Allergies/GSE84046"

# Output paths
out_data_file = "./output/preprocess/3/Allergies/GSE84046.csv"
out_gene_data_file = "./output/preprocess/3/Allergies/gene_data/GSE84046.csv"
out_clinical_data_file = "./output/preprocess/3/Allergies/clinical_data/GSE84046.csv"
json_path = "./output/preprocess/3/Allergies/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Based on background info, this is gene expression data from adipose tissue
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# Trait - protein diet type in Feature 1 
trait_row = 1

def convert_trait(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if 'high' in value:
        return 1  # High protein diet
    elif 'normal' in value:
        return 0  # Normal protein diet
    return None

# Age - can be calculated from birth date in Feature 5
age_row = 5 

def convert_age(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1]
    try:
        birth_year = int(value.split('-')[0])
        # Study year appears to be around 2013-2014 based on Series info
        study_year = 2014  
        return study_year - birth_year
    except:
        return None

# Gender - Feature 4
gender_row = 4

def convert_gender(x):
    if not isinstance(x, str):
        return None
    value = x.split(': ')[-1].lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Metadata 
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we extract clinical features
clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                         trait=trait,
                                         trait_row=trait_row,
                                         convert_trait=convert_trait,
                                         age_row=age_row,
                                         convert_age=convert_age,
                                         gender_row=gender_row,
                                         convert_gender=convert_gender)

# Preview and save clinical data
print("Preview of clinical data:")
print(preview_df(clinical_df))
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Looking at the gene identifiers, they appear to be numerical IDs from Illumina array probes
# These need to be mapped to human gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

# Print example rows showing the mapping information columns
print("\nSample mapping columns ('ID' and 'gene_assignment'):")
print(gene_annotation[['ID', 'gene_assignment']].head().to_string())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers") 
print("'gene_assignment' column: Contains gene information from which symbols can be extracted")
# Get mapping data from annotation, using 'ID' and 'gene_assignment' columns
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')

# Convert probe-level measurements to gene-level data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=mapping_df)

# Preview the results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20])

# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save normalized gene data
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
try:
    clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Determine if features are biased
    is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Validate and save cohort info
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=is_trait_biased,
        df=linked_data,
        note="Gene expression data successfully mapped and linked with clinical features"
    )

    # 6. Save linked data if usable
    if is_usable:
        linked_data.to_csv(out_data_file)

except Exception as e:
    print(f"Error in data linking and processing: {str(e)}")
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=True,
        df=pd.DataFrame(),
        note=f"Data processing failed: {str(e)}"
    )