File size: 6,441 Bytes
4c09b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Amyotrophic_Lateral_Sclerosis"
cohort = "GSE118336"

# Input paths
in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE118336"

# Output paths
out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE118336.csv"
out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE118336.csv"
out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE118336.csv"
json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Dataset uses HTA2.0 human transcriptome array, which measures gene expression
is_gene_available = True

# 2.1 Data Availability
# Genotype field (Feature 1) indicates disease status - control vs mutation carriers
trait_row = 1
# Age and gender not available 
age_row = None 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    """Convert genotype to binary trait - 0 for control, 1 for mutation carriers"""
    if not isinstance(x, str):
        return None
    value = x.split(": ")[-1].strip()
    if value == "FUSWT/WT":
        return 0  # Control
    elif value in ["FUSWT/H517D", "FUSH517D/H517D"]:
        return 1  # Mutation carriers
    return None

convert_age = None
convert_gender = None

# 3. Save Metadata
_ = validate_and_save_cohort_info(is_final=False, 
                                 cohort=cohort,
                                 info_path=json_path,
                                 is_gene_available=is_gene_available,
                                 is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
clinical_features = geo_select_clinical_features(clinical_data, 
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait)

print("Preview of clinical features:")
print(preview_df(clinical_features))

# Save clinical features
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
requires_gene_mapping = True
# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'gene_assignment' column: Contains gene symbols")
print("\nExample gene_assignment value:")
print(gene_annotation['gene_assignment'].iloc[0])
# Create mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')

# Convert probe-level data to gene-level data 
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Normalize gene symbols to standard format
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview results
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
print("\nRandomly check some gene indices to verify they are gene symbols:")
print("\nRandom sample of 10 gene indices:")
print(gene_data.index[::len(gene_data.index)//10][:10])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save normalized gene data
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
try:
    clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

    # 3. Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # 4. Determine if features are biased
    is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # 5. Validate and save cohort info
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=is_trait_biased,
        df=linked_data,
        note="Gene expression data successfully mapped and linked with clinical features"
    )

    # 6. Save linked data only if usable AND trait is not biased
    if is_usable and not is_trait_biased:
        linked_data.to_csv(out_data_file)

except Exception as e:
    print(f"Error in data linking and processing: {str(e)}")
    is_usable = validate_and_save_cohort_info(
        is_final=True,
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,  
        is_trait_available=True,
        is_biased=True,
        df=pd.DataFrame(),
        note=f"Data processing failed: {str(e)}"
    )