Liu-Hy commited on
Commit
4c09b1c
·
verified ·
1 Parent(s): 25a2692

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +18 -0
  2. p3/preprocess/Acute_Myeloid_Leukemia/gene_data/TCGA.csv +3 -0
  3. p3/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv +3 -0
  4. p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE29801.csv +3 -0
  5. p3/preprocess/Allergies/GSE185658.csv +3 -0
  6. p3/preprocess/Allergies/gene_data/GSE182740.csv +3 -0
  7. p3/preprocess/Allergies/gene_data/GSE185658.csv +3 -0
  8. p3/preprocess/Allergies/gene_data/GSE203196.csv +0 -0
  9. p3/preprocess/Allergies/gene_data/GSE203409.csv +0 -0
  10. p3/preprocess/Allergies/gene_data/GSE230164.csv +3 -0
  11. p3/preprocess/Allergies/gene_data/GSE84046.csv +3 -0
  12. p3/preprocess/Alopecia/GSE148346.csv +3 -0
  13. p3/preprocess/Alopecia/GSE66664.csv +3 -0
  14. p3/preprocess/Alopecia/code/GSE18876.py +135 -0
  15. p3/preprocess/Alopecia/code/GSE66664.py +195 -0
  16. p3/preprocess/Alopecia/code/GSE81071.py +190 -0
  17. p3/preprocess/Alopecia/code/TCGA.py +30 -0
  18. p3/preprocess/Alopecia/gene_data/GSE148346.csv +3 -0
  19. p3/preprocess/Alopecia/gene_data/GSE18876.csv +3 -0
  20. p3/preprocess/Alopecia/gene_data/GSE66664.csv +3 -0
  21. p3/preprocess/Alopecia/gene_data/GSE80342.csv +0 -0
  22. p3/preprocess/Alopecia/gene_data/GSE81071.csv +1 -0
  23. p3/preprocess/Alzheimers_Disease/GSE109887.csv +3 -0
  24. p3/preprocess/Alzheimers_Disease/GSE117589.csv +0 -0
  25. p3/preprocess/Alzheimers_Disease/GSE122063.csv +3 -0
  26. p3/preprocess/Alzheimers_Disease/GSE137202.csv +0 -0
  27. p3/preprocess/Alzheimers_Disease/GSE139384.csv +0 -0
  28. p3/preprocess/Alzheimers_Disease/GSE185909.csv +0 -0
  29. p3/preprocess/Alzheimers_Disease/GSE214417.csv +25 -0
  30. p3/preprocess/Alzheimers_Disease/GSE243243.csv +3 -0
  31. p3/preprocess/Alzheimers_Disease/clinical_data/GSE109887.csv +4 -0
  32. p3/preprocess/Alzheimers_Disease/clinical_data/GSE117589.csv +4 -0
  33. p3/preprocess/Alzheimers_Disease/clinical_data/GSE122063.csv +4 -0
  34. p3/preprocess/Alzheimers_Disease/clinical_data/GSE132903.csv +4 -0
  35. p3/preprocess/Alzheimers_Disease/clinical_data/GSE137202.csv +2 -0
  36. p3/preprocess/Alzheimers_Disease/clinical_data/GSE139384.csv +4 -0
  37. p3/preprocess/Alzheimers_Disease/clinical_data/GSE167559.csv +4 -0
  38. p3/preprocess/Alzheimers_Disease/clinical_data/GSE185909.csv +4 -0
  39. p3/preprocess/Alzheimers_Disease/clinical_data/GSE214417.csv +4 -0
  40. p3/preprocess/Alzheimers_Disease/clinical_data/GSE243243.csv +2 -0
  41. p3/preprocess/Alzheimers_Disease/clinical_data/TCGA.csv +1149 -0
  42. p3/preprocess/Alzheimers_Disease/code/GSE109887.py +180 -0
  43. p3/preprocess/Alzheimers_Disease/code/GSE117589.py +222 -0
  44. p3/preprocess/Alzheimers_Disease/code/GSE122063.py +206 -0
  45. p3/preprocess/Alzheimers_Disease/code/GSE132903.py +209 -0
  46. p3/preprocess/Alzheimers_Disease/code/GSE137202.py +198 -0
  47. p3/preprocess/Alzheimers_Disease/code/GSE139384.py +215 -0
  48. p3/preprocess/Alzheimers_Disease/code/GSE167559.py +107 -0
  49. p3/preprocess/Alzheimers_Disease/code/GSE185909.py +222 -0
  50. p3/preprocess/Alzheimers_Disease/code/GSE214417.py +205 -0
.gitattributes CHANGED
@@ -1433,3 +1433,21 @@ p3/preprocess/Adrenocortical_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge
1433
  p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE38662.csv filter=lfs diff=lfs merge=lfs -text
1434
  p3/preprocess/Age-Related_Macular_Degeneration/GSE29801.csv filter=lfs diff=lfs merge=lfs -text
1435
  p3/preprocess/Allergies/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1433
  p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE38662.csv filter=lfs diff=lfs merge=lfs -text
1434
  p3/preprocess/Age-Related_Macular_Degeneration/GSE29801.csv filter=lfs diff=lfs merge=lfs -text
1435
  p3/preprocess/Allergies/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
1436
+ p3/preprocess/Allergies/GSE185658.csv filter=lfs diff=lfs merge=lfs -text
1437
+ p3/preprocess/Allergies/gene_data/GSE182740.csv filter=lfs diff=lfs merge=lfs -text
1438
+ p3/preprocess/Acute_Myeloid_Leukemia/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1439
+ p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE29801.csv filter=lfs diff=lfs merge=lfs -text
1440
+ p3/preprocess/Allergies/gene_data/GSE185658.csv filter=lfs diff=lfs merge=lfs -text
1441
+ p3/preprocess/Allergies/gene_data/GSE84046.csv filter=lfs diff=lfs merge=lfs -text
1442
+ p3/preprocess/Alopecia/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
1443
+ p3/preprocess/Allergies/gene_data/GSE230164.csv filter=lfs diff=lfs merge=lfs -text
1444
+ p3/preprocess/Alopecia/gene_data/GSE148346.csv filter=lfs diff=lfs merge=lfs -text
1445
+ p3/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv filter=lfs diff=lfs merge=lfs -text
1446
+ p3/preprocess/Alopecia/gene_data/GSE18876.csv filter=lfs diff=lfs merge=lfs -text
1447
+ p3/preprocess/Alzheimers_Disease/GSE109887.csv filter=lfs diff=lfs merge=lfs -text
1448
+ p3/preprocess/Alzheimers_Disease/GSE243243.csv filter=lfs diff=lfs merge=lfs -text
1449
+ p3/preprocess/Alzheimers_Disease/GSE122063.csv filter=lfs diff=lfs merge=lfs -text
1450
+ p3/preprocess/Alopecia/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
1451
+ p3/preprocess/Alopecia/gene_data/GSE66664.csv filter=lfs diff=lfs merge=lfs -text
1452
+ p3/preprocess/Amyotrophic_Lateral_Sclerosis/GSE118336.csv filter=lfs diff=lfs merge=lfs -text
1453
+ p3/preprocess/Amyotrophic_Lateral_Sclerosis/GSE26927.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Acute_Myeloid_Leukemia/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:fb21aaffce97761860ea3e19dc18e974ff7a2bc786c22ba1f85d585c53893b2a
3
+ size 51467419
p3/preprocess/Adrenocortical_Cancer/gene_data/GSE68950.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:54bc2618961cab9be52e2e0e50a219b5df5559caeddf32ce819e42341796dec5
3
+ size 65411017
p3/preprocess/Age-Related_Macular_Degeneration/gene_data/GSE29801.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:52fa32d0646337ffcbb20913657fa132d2abdefad5f15ca969eabb5e422f0f4b
3
+ size 32409226
p3/preprocess/Allergies/GSE185658.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:bf47687c6d1cd2cc3ee069d544f3820b5b0af6ac8476a6a82e9605bd601541d3
3
+ size 18243249
p3/preprocess/Allergies/gene_data/GSE182740.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:095173af41a72566b017be3af9b37ffcce35a7b1300de4acb4731e97fb40270d
3
+ size 16722597
p3/preprocess/Allergies/gene_data/GSE185658.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:c3b064b4ff46319ff3299b7070c722d1dc8c5d18ccd250e48a01a23b881a5478
3
+ size 18243051
p3/preprocess/Allergies/gene_data/GSE203196.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Allergies/gene_data/GSE203409.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Allergies/gene_data/GSE230164.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7e6255f788c2c7ca89a3dab26eb0d2a82c7ec2fc31f7e4b1b9d184fa1db05eec
3
+ size 25530449
p3/preprocess/Allergies/gene_data/GSE84046.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d28cbd17a3b8fde7cad97fdd235a4eb7f60a848d6819c231ae2f861172439408
3
+ size 12843969
p3/preprocess/Alopecia/GSE148346.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6922de26af230215c081544a51199b53176d434630d33303166119b3a7fc5b43
3
+ size 20446781
p3/preprocess/Alopecia/GSE66664.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:98f97b3a973a426ec32ccf4bf8745797511a861b23854255500849cc35e311f9
3
+ size 36070366
p3/preprocess/Alopecia/code/GSE18876.py ADDED
@@ -0,0 +1,135 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alopecia"
6
+ cohort = "GSE18876"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alopecia"
10
+ in_cohort_dir = "../DATA/GEO/Alopecia/GSE18876"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alopecia/GSE18876.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/GSE18876.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/GSE18876.csv"
16
+ json_path = "./output/preprocess/3/Alopecia/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # Gene expression data availability
37
+ # Yes - the series title and summary mention transcriptional profiling using exon arrays
38
+ is_gene_available = True
39
+
40
+ # Variable rows and conversion functions
41
+ trait_row = None # Cannot reliably determine alopecia status from characteristics
42
+ age_row = 0 # Age is in feature 0
43
+ gender_row = None # Not needed since all samples are male based on background info
44
+
45
+ def convert_age(value):
46
+ if not value or ':' not in value:
47
+ return None
48
+ try:
49
+ age = int(value.split(':')[1].strip())
50
+ return age
51
+ except:
52
+ return None
53
+
54
+ # Note: trait and gender conversion functions not needed since data not available
55
+ convert_trait = None
56
+ convert_gender = None
57
+
58
+ # Save metadata for initial filtering
59
+ is_trait_available = trait_row is not None
60
+ validate_and_save_cohort_info(is_final=False,
61
+ cohort=cohort,
62
+ info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=is_trait_available)
65
+
66
+ # Skip clinical feature extraction since trait data is not available
67
+ # Extract gene expression data from matrix file
68
+ gene_data = get_genetic_data(matrix_file)
69
+
70
+ # Print first 20 row IDs and shape of data to help debug
71
+ print("Shape of gene expression data:", gene_data.shape)
72
+ print("\nFirst few rows of data:")
73
+ print(gene_data.head())
74
+ print("\nFirst 20 gene/probe identifiers:")
75
+ print(gene_data.index[:20])
76
+
77
+ # Inspect a snippet of raw file to verify identifier format
78
+ import gzip
79
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
80
+ lines = []
81
+ for i, line in enumerate(f):
82
+ if "!series_matrix_table_begin" in line:
83
+ # Get the next 5 lines after the marker
84
+ for _ in range(5):
85
+ lines.append(next(f).strip())
86
+ break
87
+ print("\nFirst few lines after matrix marker in raw file:")
88
+ for line in lines:
89
+ print(line)
90
+ requires_gene_mapping = True
91
+ # Extract gene annotation from SOFT file and get meaningful data
92
+ gene_annotation = get_gene_annotation(soft_file)
93
+
94
+ # Preview gene annotation data
95
+ print("Gene annotation shape:", gene_annotation.shape)
96
+ print("\nGene annotation preview:")
97
+ print(preview_df(gene_annotation))
98
+
99
+ print("\nNumber of non-null values in each column:")
100
+ print(gene_annotation.count())
101
+
102
+ # Print example rows showing the mapping columns
103
+ print("\nSample mapping columns ('ID' and gene_assignment):")
104
+ print(gene_annotation[['ID', 'gene_assignment']].head().to_string())
105
+
106
+ print("\nNote: Gene mapping will use:")
107
+ print("'ID' column: Probe identifiers")
108
+ print("'gene_assignment' column: Gene information")
109
+ # Get mapping dataframe
110
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
111
+
112
+ # Apply gene mapping to convert probe IDs to gene symbols
113
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
114
+
115
+ # Normalize gene symbols
116
+ gene_data = normalize_gene_symbols_in_index(gene_data)
117
+
118
+ # Print shape and preview to verify mapping
119
+ print("Shape after mapping:", gene_data.shape)
120
+ print("\nPreview of mapped gene expression data:")
121
+ print(gene_data.head())
122
+ # Save normalized gene data
123
+ gene_data.to_csv(out_gene_data_file)
124
+
125
+ # Since trait data is not available, mark dataset as unusable
126
+ is_usable = validate_and_save_cohort_info(
127
+ is_final=True,
128
+ cohort=cohort,
129
+ info_path=json_path,
130
+ is_gene_available=True,
131
+ is_trait_available=False,
132
+ is_biased=True,
133
+ df=gene_data,
134
+ note="Dataset lacks trait information required for analysis"
135
+ )
p3/preprocess/Alopecia/code/GSE66664.py ADDED
@@ -0,0 +1,195 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alopecia"
6
+ cohort = "GSE66664"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alopecia"
10
+ in_cohort_dir = "../DATA/GEO/Alopecia/GSE66664"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alopecia/GSE66664.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/GSE66664.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/GSE66664.csv"
16
+ json_path = "./output/preprocess/3/Alopecia/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Yes, this dataset contains transcriptome data (gene expression)
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # Trait (Alopecia) can be determined from cell line
42
+ trait_row = 0
43
+ def convert_trait(value):
44
+ if not value or ':' not in value:
45
+ return None
46
+ # Extract part after colon and strip whitespace
47
+ val = value.split(':')[1].strip()
48
+ # BAN (non-balding) = 0, BAB (balding) = 1
49
+ if val == 'BAN':
50
+ return 0
51
+ elif val == 'BAB':
52
+ return 1
53
+ return None
54
+
55
+ # Age data not available
56
+ age_row = None
57
+ convert_age = None
58
+
59
+ # Gender data not available (all male based on background info but this is constant)
60
+ gender_row = None
61
+ convert_gender = None
62
+
63
+ # 3. Save Metadata
64
+ # is_trait_available = True since trait_row is not None
65
+ validate_and_save_cohort_info(is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=True)
70
+
71
+ # 4. Clinical Feature Extraction
72
+ # Extract clinical features since trait data is available
73
+ clinical_df = geo_select_clinical_features(clinical_data,
74
+ trait=trait,
75
+ trait_row=trait_row,
76
+ convert_trait=convert_trait,
77
+ age_row=age_row,
78
+ convert_age=convert_age,
79
+ gender_row=gender_row,
80
+ convert_gender=convert_gender)
81
+
82
+ # Preview the extracted features
83
+ preview_result = preview_df(clinical_df)
84
+ print("Preview of clinical data:")
85
+ print(preview_result)
86
+
87
+ # Save clinical data
88
+ clinical_df.to_csv(out_clinical_data_file)
89
+ # Extract gene expression data from matrix file
90
+ gene_data = get_genetic_data(matrix_file)
91
+
92
+ # Print first 20 row IDs and shape of data to help debug
93
+ print("Shape of gene expression data:", gene_data.shape)
94
+ print("\nFirst few rows of data:")
95
+ print(gene_data.head())
96
+ print("\nFirst 20 gene/probe identifiers:")
97
+ print(gene_data.index[:20])
98
+
99
+ # Inspect a snippet of raw file to verify identifier format
100
+ import gzip
101
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
102
+ lines = []
103
+ for i, line in enumerate(f):
104
+ if "!series_matrix_table_begin" in line:
105
+ # Get the next 5 lines after the marker
106
+ for _ in range(5):
107
+ lines.append(next(f).strip())
108
+ break
109
+ print("\nFirst few lines after matrix marker in raw file:")
110
+ for line in lines:
111
+ print(line)
112
+ # The identifiers starting with "ILMN_" indicate these are Illumina probes/beads
113
+ # They need to be mapped to standard human gene symbols
114
+ requires_gene_mapping = True
115
+ # Extract gene annotation from SOFT file and get meaningful data
116
+ gene_annotation = get_gene_annotation(soft_file)
117
+
118
+ # Preview gene annotation data
119
+ print("Gene annotation shape:", gene_annotation.shape)
120
+ print("\nGene annotation preview:")
121
+ print(preview_df(gene_annotation))
122
+
123
+ print("\nNumber of non-null values in each column:")
124
+ print(gene_annotation.count())
125
+
126
+ # Print example rows showing the mapping columns
127
+ print("\nSample mapping columns ('ID' and 'Symbol'):")
128
+ print(gene_annotation[['ID', 'Symbol']].head().to_string())
129
+
130
+ print("\nNote: Gene mapping will use:")
131
+ print("'ID' column: Probe identifiers")
132
+ print("'Symbol' column: Gene information")
133
+ # Get gene mapping between probes and genes
134
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
135
+
136
+ # Apply the mapping to convert probe-level data to gene expression data
137
+ mapped_gene_data = apply_gene_mapping(gene_data, mapping_df)
138
+
139
+ # Preview the shape and first few rows
140
+ print("Shape of mapped gene expression data:", mapped_gene_data.shape)
141
+ print("\nFirst few rows of mapped data:")
142
+ print(mapped_gene_data.head())
143
+ print("\nFirst few gene names:")
144
+ print(mapped_gene_data.index[:20])
145
+
146
+ # Save gene expression data
147
+ mapped_gene_data.to_csv(out_gene_data_file)
148
+
149
+ # Update gene_data to use mapped values
150
+ gene_data = mapped_gene_data
151
+ # 1. Normalize gene symbols
152
+ gene_data = normalize_gene_symbols_in_index(gene_data)
153
+
154
+ # Save normalized gene data
155
+ gene_data.to_csv(out_gene_data_file)
156
+
157
+ # 2. Link clinical and genetic data
158
+ try:
159
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
160
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
161
+
162
+ # 3. Handle missing values
163
+ linked_data = handle_missing_values(linked_data, trait)
164
+
165
+ # 4. Determine if features are biased
166
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
167
+
168
+ # 5. Validate and save cohort info
169
+ is_usable = validate_and_save_cohort_info(
170
+ is_final=True,
171
+ cohort=cohort,
172
+ info_path=json_path,
173
+ is_gene_available=True,
174
+ is_trait_available=True,
175
+ is_biased=is_trait_biased,
176
+ df=linked_data,
177
+ note="Gene expression data successfully mapped and linked with clinical features"
178
+ )
179
+
180
+ # 6. Save linked data only if usable AND trait is not biased
181
+ if is_usable and not is_trait_biased:
182
+ linked_data.to_csv(out_data_file)
183
+
184
+ except Exception as e:
185
+ print(f"Error in data linking and processing: {str(e)}")
186
+ is_usable = validate_and_save_cohort_info(
187
+ is_final=True,
188
+ cohort=cohort,
189
+ info_path=json_path,
190
+ is_gene_available=True,
191
+ is_trait_available=True,
192
+ is_biased=True,
193
+ df=pd.DataFrame(),
194
+ note=f"Data processing failed: {str(e)}"
195
+ )
p3/preprocess/Alopecia/code/GSE81071.py ADDED
@@ -0,0 +1,190 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alopecia"
6
+ cohort = "GSE81071"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alopecia"
10
+ in_cohort_dir = "../DATA/GEO/Alopecia/GSE81071"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alopecia/GSE81071.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/GSE81071.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/GSE81071.csv"
16
+ json_path = "./output/preprocess/3/Alopecia/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Yes, this is gene expression data from RNA as mentioned in Series_overall_design
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability
41
+ trait_row = 1 # disease state indicates Alopecia status through DLE/sCLE which cause alopecia
42
+ age_row = None # Age information not available
43
+ gender_row = None # Gender information not available
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(value: str) -> Optional[int]:
47
+ """Convert disease state to binary value:
48
+ 1 for DLE/SCLE (presence of lupus with alopecia)
49
+ 0 for healthy/normal (control)
50
+ """
51
+ if not value or ':' not in value:
52
+ return None
53
+ value = value.split(':')[1].strip().lower()
54
+ if value in ['dle', 'scle']:
55
+ return 1
56
+ elif value in ['healthy', 'normal']:
57
+ return 0
58
+ return None
59
+
60
+ # Since age and gender data not available, their conversion functions not needed
61
+ convert_age = None
62
+ convert_gender = None
63
+
64
+ # 3. Save Metadata
65
+ is_trait_available = trait_row is not None
66
+ is_initial = validate_and_save_cohort_info(
67
+ is_final=False,
68
+ cohort=cohort,
69
+ info_path=json_path,
70
+ is_gene_available=is_gene_available,
71
+ is_trait_available=is_trait_available
72
+ )
73
+
74
+ # 4. Clinical Feature Extraction
75
+ if trait_row is not None:
76
+ clinical_features = geo_select_clinical_features(
77
+ clinical_df=clinical_data,
78
+ trait=trait,
79
+ trait_row=trait_row,
80
+ convert_trait=convert_trait,
81
+ age_row=age_row,
82
+ convert_age=convert_age,
83
+ gender_row=gender_row,
84
+ convert_gender=convert_gender
85
+ )
86
+
87
+ # Preview the extracted features
88
+ preview = preview_df(clinical_features)
89
+ print("Preview of clinical features:")
90
+ print(preview)
91
+
92
+ # Save to CSV
93
+ clinical_features.to_csv(out_clinical_data_file)
94
+ # Extract gene expression data from matrix file
95
+ gene_data = get_genetic_data(matrix_file)
96
+
97
+ # Print first 20 row IDs and shape of data to help debug
98
+ print("Shape of gene expression data:", gene_data.shape)
99
+ print("\nFirst few rows of data:")
100
+ print(gene_data.head())
101
+ print("\nFirst 20 gene/probe identifiers:")
102
+ print(gene_data.index[:20])
103
+
104
+ # Inspect a snippet of raw file to verify identifier format
105
+ import gzip
106
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
107
+ lines = []
108
+ for i, line in enumerate(f):
109
+ if "!series_matrix_table_begin" in line:
110
+ # Get the next 5 lines after the marker
111
+ for _ in range(5):
112
+ lines.append(next(f).strip())
113
+ break
114
+ print("\nFirst few lines after matrix marker in raw file:")
115
+ for line in lines:
116
+ print(line)
117
+ # These identifiers (e.g. '100009613_at', '100009676_at') are Affymetrix probe IDs
118
+ # They need to be mapped to human gene symbols for proper analysis
119
+ requires_gene_mapping = True
120
+ # Extract gene annotation from SOFT file and get meaningful data
121
+ gene_annotation = get_gene_annotation(soft_file)
122
+
123
+ # Examine all columns to identify gene symbol information
124
+ print("Gene annotation shape:", gene_annotation.shape)
125
+ print("\nAll column names:")
126
+ print(gene_annotation.columns.tolist())
127
+
128
+ # Print a few complete rows to see all available information
129
+ print("\nFirst few complete rows:")
130
+ print(gene_annotation.head(3).to_string())
131
+
132
+ # Print out some useful statistics
133
+ print("\nNumber of non-null values in each column:")
134
+ print(gene_annotation.count())
135
+
136
+ # Since this printout may be needed for next steps
137
+ print("\nNote: Gene mapping will need probe IDs and gene symbols")
138
+ print("Currently found columns:")
139
+ print("'ID' column: Contains probe identifiers")
140
+ print("Will need to identify appropriate column for gene symbols")
141
+ # Get probe ID to Entrez ID mapping from annotation data
142
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='ENTREZ_GENE_ID')
143
+
144
+ # Use NCBI's Entrez Gene IDs to map to gene symbols
145
+ mapped_gene_data = apply_gene_mapping(gene_data, mapping_df)
146
+
147
+ # Normalize gene symbols in the index to standardize and aggregate values
148
+ gene_data = normalize_gene_symbols_in_index(mapped_gene_data)
149
+
150
+ # Save processed gene expression data
151
+ gene_data.to_csv(out_gene_data_file)
152
+ # Reload clinical data from source
153
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
154
+
155
+ # Extract clinical features with the corrected trait conversion
156
+ clinical_features = geo_select_clinical_features(
157
+ clinical_df=clinical_data,
158
+ trait=trait,
159
+ trait_row=trait_row,
160
+ convert_trait=convert_trait,
161
+ age_row=age_row,
162
+ convert_age=convert_age,
163
+ gender_row=gender_row,
164
+ convert_gender=convert_gender
165
+ )
166
+
167
+ # Link clinical and genetic data
168
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
169
+
170
+ # Handle missing values
171
+ linked_data = handle_missing_values(linked_data, trait)
172
+
173
+ # Determine if features are biased
174
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
175
+
176
+ # Validate and save cohort info
177
+ is_usable = validate_and_save_cohort_info(
178
+ is_final=True,
179
+ cohort=cohort,
180
+ info_path=json_path,
181
+ is_gene_available=True,
182
+ is_trait_available=True,
183
+ is_biased=is_trait_biased,
184
+ df=linked_data,
185
+ note="Gene expression data successfully mapped and linked with clinical features"
186
+ )
187
+
188
+ # Save linked data only if usable AND trait is not biased
189
+ if is_usable and not is_trait_biased:
190
+ linked_data.to_csv(out_data_file)
p3/preprocess/Alopecia/code/TCGA.py ADDED
@@ -0,0 +1,30 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alopecia"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Alopecia/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Alopecia/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Alopecia/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Alopecia/cohort_info.json"
15
+
16
+ # 1. Review subdirectories for matching trait data
17
+ subdirs = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
18
+
19
+ # No suitable directory exists for age-related macular degeneration
20
+ # Mark data as unavailable
21
+ cohort = "TCGA_no_suitable_cohort"
22
+
23
+ # Record unavailability and end preprocessing
24
+ validate_and_save_cohort_info(
25
+ is_final=False,
26
+ cohort=cohort,
27
+ info_path=json_path,
28
+ is_gene_available=False,
29
+ is_trait_available=False
30
+ )
p3/preprocess/Alopecia/gene_data/GSE148346.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:830556682e0675dd524d2e1f986ec941a14de052b109af704c73ffd79667a6b4
3
+ size 20446260
p3/preprocess/Alopecia/gene_data/GSE18876.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:1f138e02b190833ca491eb19bb4c1025ed390ad8e84765f26124c1c4c0a6ab1e
3
+ size 21422913
p3/preprocess/Alopecia/gene_data/GSE66664.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:3c4dac871fce23933c4db6847907a61bd43ef30584b1c524a208cafb30b5f71e
3
+ size 36069801
p3/preprocess/Alopecia/gene_data/GSE80342.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Alopecia/gene_data/GSE81071.csv ADDED
@@ -0,0 +1 @@
 
 
1
+ Gene,GSM2142137,GSM2142138,GSM2142139,GSM2142140,GSM2142141,GSM2142142,GSM2142143,GSM2142144,GSM2142145,GSM2142146,GSM2142147,GSM2142148,GSM2142149,GSM2142150,GSM2142151,GSM2142152,GSM2142153,GSM2142154,GSM2142155,GSM2142156,GSM2142157,GSM2142158,GSM2142159,GSM2142160,GSM2142161,GSM2142162,GSM2142163,GSM2142164,GSM2142165,GSM2142166,GSM2142167,GSM2142168,GSM2142169,GSM2142170,GSM2142171,GSM2142172,GSM2142173,GSM2142174,GSM2142175,GSM2142176,GSM2142177,GSM2142178,GSM2142179,GSM2142180,GSM2142181,GSM2142182,GSM2142183,GSM2142184,GSM2142185,GSM2142186,GSM2142187,GSM2142188,GSM2142189,GSM2142190,GSM2142191,GSM2142192,GSM3999298,GSM3999300,GSM3999301,GSM3999303,GSM3999304,GSM3999306,GSM3999307,GSM3999308,GSM3999309,GSM3999311,GSM3999312,GSM3999313,GSM3999314,GSM3999315,GSM3999317,GSM3999318,GSM3999319,GSM3999320,GSM3999322,GSM3999323,GSM3999324,GSM3999326,GSM3999327,GSM3999328,GSM3999330,GSM3999332,GSM3999333,GSM3999334,GSM3999336,GSM3999337,GSM3999339,GSM3999340,GSM3999341,GSM3999343,GSM3999344,GSM3999345,GSM3999347,GSM3999348,GSM3999349,GSM3999351,GSM3999352,GSM3999353,GSM3999355,GSM3999356,GSM3999357,GSM3999359,GSM3999360
p3/preprocess/Alzheimers_Disease/GSE109887.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:a88e64e81ef553bc6ba04951f1c762e62392e4845af8ed538ec01a484c0d3450
3
+ size 25492463
p3/preprocess/Alzheimers_Disease/GSE117589.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Alzheimers_Disease/GSE122063.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ead2ee371340d6c786a82a6f796fd9ca7df00d812e71b1d888f2b75c48d9f9cc
3
+ size 25233147
p3/preprocess/Alzheimers_Disease/GSE137202.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Alzheimers_Disease/GSE139384.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Alzheimers_Disease/GSE185909.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Alzheimers_Disease/GSE214417.csv ADDED
@@ -0,0 +1,25 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ ,Alzheimers_Disease,Age,ATP8,C2,C3,C6,C7,C9,COX1,COX2,CYTB,F10,F11,F12,F2,F3,F5,F7,F8,F9,H19,HM13,IGKV1-5,MOSMO,ND1,ND2,ND3,ND4,ND4L,ND5,ND6,SLC25A5
2
+ GSM6567822,0.0,8.0,1.9,0.4,1.52,-1.24,0.22,-0.82,2.3,2.3,2.31,-1.23,-1.03,-0.22,-0.92,1.34,1.35,-1.23,-0.25,-1.08,-0.28,1.8299999999999998,-0.35,2.45,1.84,2.26,2.04,2.13,2.21,2.04,0.23,-0.46
3
+ GSM6567823,0.0,8.0,1.73,0.2,1.07,-1.19,-0.02,-1.31,2.25,2.12,2.17,-1.01,-0.57,-0.18,-0.79,1.31,0.01,-1.03,-0.17,-0.72,-0.48,1.73,-0.45,2.61,1.68,2.0,1.86,1.96,2.05,1.85,0.38,-0.59
4
+ GSM6567824,0.0,8.0,1.75,0.59,1.31,-0.96,-0.06,-1.09,2.27,2.18,2.21,-1.11,-0.88,-0.25,-0.79,1.3,0.86,-0.89,-0.3,-0.83,-0.38,1.62,-0.34,2.42,1.67,2.04,1.83,2.03,2.1,1.87,0.38,-0.43
5
+ GSM6567825,0.0,8.0,1.88,0.18,1.3199999999999998,-1.2,0.07,-1.2,2.38,2.31,2.36,-1.18,-1.08,-0.32,-1.08,1.3,0.17,-0.81,-0.32,-0.93,-0.57,1.71,-0.47,2.61,1.8,2.09,2.01,2.16,2.23,2.0,0.42,-0.58
6
+ GSM6567826,1.0,8.0,1.79,0.05,1.32,-1.16,-0.05,-1.12,2.4,2.26,2.47,-1.21,-1.2,-0.24,-0.92,1.26,0.76,-1.2,-0.31,-0.65,-0.48,1.4500000000000002,-0.44,2.67,1.72,2.13,2.01,2.22,2.11,1.89,0.49,0.07
7
+ GSM6567827,1.0,8.0,1.76,0.71,1.46,-1.18,-0.07,-0.73,2.34,2.21,2.3,-0.92,-0.84,-0.34,-1.23,1.25,1.2,-1.23,-0.25,-0.61,-0.34,1.48,-0.61,2.66,1.66,2.08,1.9,2.04,2.07,1.87,0.36,-0.42
8
+ GSM6567828,1.0,8.0,1.81,0.4,1.44,-1.1,-0.01,-1.24,2.32,2.19,2.2,-1.22,-0.85,-0.19,-0.82,1.3,1.19,-1.23,-0.34,-0.59,-0.28,1.58,-0.41,2.63,1.52,2.07,1.96,2.05,2.1,1.9,0.38,-0.52
9
+ GSM6567829,1.0,8.0,1.79,0.35,1.33,-1.11,-0.06,-0.77,2.26,2.21,2.31,-1.23,-0.97,-0.38,-0.99,1.31,1.37,-1.07,-0.25,-0.75,-0.46,1.6,-0.51,2.65,1.7,2.09,1.97,2.06,2.13,1.92,0.47,-0.47
10
+ GSM6567830,1.0,8.0,1.79,0.29,1.51,-1.24,0.02,-1.25,2.35,2.21,2.26,-0.9,-0.93,-0.22,-0.76,1.34,0.58,-0.79,-0.22,-0.8,-0.39,1.7599999999999998,-0.43,2.5599999999999996,1.69,2.06,1.89,2.03,2.11,1.91,0.41,-0.35
11
+ GSM6567831,1.0,8.0,1.82,0.51,0.5900000000000001,-1.21,-0.04,-1.21,2.36,2.29,2.36,-1.21,-1.12,-0.19,-0.55,1.32,-0.05,-1.1,-0.3,-0.63,-0.58,1.7000000000000004,-0.57,2.7199999999999998,1.62,2.1,2.0,2.1,2.14,1.89,0.56,-1.17
12
+ GSM6567832,1.0,8.0,1.78,0.04,0.9099999999999999,-1.18,-0.06,-1.18,2.33,2.25,2.29,-1.26,-0.97,-0.28,-0.92,1.29,-0.13,-0.8,-0.35,-0.75,-0.54,1.5400000000000003,-0.37,2.69,1.68,2.07,2.0,2.07,2.09,1.93,0.52,-0.73
13
+ GSM6567833,0.0,9.0,1.83,0.16,0.8300000000000001,-1.13,0.09,-1.23,2.43,2.31,2.33,-1.22,-1.03,-0.18,-0.89,1.29,-0.17,-1.16,-0.28,-0.75,-0.75,1.91,-0.45,2.4699999999999998,1.72,2.13,1.96,2.13,2.24,2.0,0.46,-0.78
14
+ GSM6567834,0.0,9.0,1.75,0.19,1.21,-1.17,-0.07,-0.34,2.31,2.19,2.27,-0.41,-0.88,-0.11,0.04,1.25,0.35,-0.5,-0.21,-0.65,-0.49,1.9100000000000001,-0.42,2.58,1.59,2.04,1.95,2.04,2.06,1.84,0.49,-0.51
15
+ GSM6567835,0.0,9.0,1.8,0.43,1.54,-0.97,-0.07,-0.46,2.31,2.24,2.27,-0.49,-0.8,-0.2,-0.1,1.31,1.04,-1.21,-0.32,-0.75,-0.48,1.81,-0.56,2.69,1.62,2.1,2.0,2.08,2.12,1.88,0.53,-0.56
16
+ GSM6567836,0.0,9.0,1.79,0.34,0.91,-1.14,-0.01,-1.1,2.32,2.22,2.1,-1.23,-0.83,-0.16,-0.71,1.29,-0.12,-0.79,-0.28,-0.72,-0.56,1.6,-0.42,2.53,1.67,2.08,1.99,2.06,2.12,1.92,0.44,-0.52
17
+ GSM6567837,0.0,9.0,1.74,0.32,1.38,-1.21,-0.05,-0.67,2.27,2.16,2.26,-0.84,-0.83,-0.22,-0.74,1.31,1.38,-1.2,-0.23,-1.17,-0.24,1.9100000000000001,-0.51,2.6399999999999997,1.62,2.0,1.9,2.0,1.99,1.87,0.41,-0.53
18
+ GSM6567838,1.0,9.0,1.93,0.38,1.58,-1.17,0.2,-1.17,2.42,2.58,2.47,-0.74,-0.69,-0.23,-0.83,1.15,0.22,-1.08,-0.25,-0.94,-0.27,1.5899999999999999,-0.45,2.5700000000000003,1.74,2.38,2.27,2.26,2.25,1.85,0.35,-0.54
19
+ GSM6567839,1.0,9.0,1.86,0.24,1.66,-0.91,0.19,-0.82,2.47,2.6,2.49,-0.87,-1.0,-0.28,-0.75,1.15,0.13,-1.14,-0.46,-0.71,-0.33,1.3499999999999999,-0.41,2.67,1.7,2.38,2.25,2.29,2.24,1.86,0.34,-0.7
20
+ GSM6567840,1.0,9.0,1.84,0.4,1.44,-1.04,0.24,-0.17,2.26,2.56,2.47,-0.86,-1.3,-0.28,-0.8,1.17,1.22,-1.02,-0.39,-0.75,-0.63,1.89,-0.03,2.6100000000000003,1.7,2.35,2.26,2.26,2.22,1.84,0.33,-0.58
21
+ GSM6567841,1.0,9.0,1.89,0.33,0.72,-1.32,0.29,-0.39,2.44,2.55,2.5,-1.16,-1.33,-0.16,-0.61,1.14,1.17,-0.89,-0.49,-0.86,-0.44,1.58,-0.47,2.5,1.78,2.38,2.25,2.29,2.26,1.89,0.15,-0.76
22
+ GSM6567842,1.0,9.0,1.92,0.21,0.81,-0.68,0.13,-1.18,2.31,2.73,2.62,-1.01,-1.19,-0.21,-0.68,1.16,-0.16,-0.73,-0.55,-1.11,-0.53,1.5300000000000002,-0.6,2.63,1.76,2.49,2.38,2.39,2.35,1.91,0.31,-0.97
23
+ GSM6567843,1.0,9.0,1.89,0.89,0.8,-0.74,0.15,-0.22,2.61,2.7,2.6,-0.97,-1.11,-0.33,-0.72,1.28,1.0,-1.11,-0.59,-1.11,-0.2,1.74,-0.63,2.56,1.7,2.44,2.36,2.36,2.33,1.91,0.26,-0.59
24
+ GSM6567844,1.0,9.0,1.91,0.44,1.49,-1.05,0.18,-0.98,2.32,2.67,2.6,-1.12,-1.19,-0.35,-1.21,1.19,1.12,-1.12,-0.51,-0.93,-0.4,1.3,-0.57,2.56,1.74,2.44,2.35,2.36,2.27,1.83,0.28,-0.89
25
+ GSM6567845,1.0,9.0,1.86,0.15,1.0,-1.13,0.15,-0.5,2.57,2.64,2.57,-1.21,-1.23,-0.3,-1.25,1.18,-0.05,-0.98,-0.6,-0.91,-0.49,1.1700000000000002,-0.41,2.6399999999999997,1.68,2.39,2.29,2.34,2.26,1.84,0.26,-1.1
p3/preprocess/Alzheimers_Disease/GSE243243.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:ba33330aab6fbc34d42344df9eec659d7cd6ddaa6499f0f81dd62869dcd8bf42
3
+ size 25405486
p3/preprocess/Alzheimers_Disease/clinical_data/GSE109887.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM2973262,GSM2973263,GSM2973264,GSM2973265,GSM2973266,GSM2973267,GSM2973268,GSM2973269,GSM2973270,GSM2973271,GSM2973272,GSM2973273,GSM2973274,GSM2973275,GSM2973276,GSM2973277,GSM2973278,GSM2973279,GSM2973280,GSM2973281,GSM2973282,GSM2973283,GSM2973284,GSM2973285,GSM2973286,GSM2973287,GSM2973288,GSM2973289,GSM2973290,GSM2973291,GSM2973292,GSM2973293,GSM2973294,GSM2973295,GSM2973296,GSM2973297,GSM2973298,GSM2973299,GSM2973300,GSM2973301,GSM2973302,GSM2973303,GSM2973304,GSM2973305,GSM2973306,GSM2973307,GSM2973308,GSM2973309,GSM2973310,GSM2973311,GSM2973312,GSM2973313,GSM2973314,GSM2973315,GSM2973316,GSM2973317,GSM2973318,GSM2973319,GSM2973320,GSM2973321,GSM2973322,GSM2973323,GSM2973324,GSM2973325,GSM2973326,GSM2973327,GSM2973328,GSM2973329,GSM2973330,GSM2973331,GSM2973332,GSM2973333,GSM2973334,GSM2973335,GSM2973336,GSM2973337,GSM2973338,GSM2973339
2
+ Alzheimers_Disease,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0
3
+ Age,91.0,87.0,82.0,73.0,94.0,72.0,90.0,86.0,87.0,92.0,81.0,87.0,92.0,95.0,75.0,87.0,95.0,90.0,77.0,84.0,85.0,89.0,89.0,82.0,78.0,70.0,86.0,75.0,94.0,82.0,82.0,73.0,77.0,85.0,92.0,84.0,87.0,86.0,92.0,92.0,90.0,82.0,82.0,89.0,90.0,87.0,78.0,88.0,86.0,88.0,86.0,92.0,81.0,82.0,92.0,81.0,89.0,85.0,94.0,85.0,82.0,81.0,77.0,81.0,79.0,78.0,78.0,79.0,86.0,91.0,82.0,84.0,91.0,87.0,86.0,88.0,81.0,85.0
4
+ Gender,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE117589.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3304268,GSM3304269,GSM3304270,GSM3304271,GSM3304272,GSM3304273,GSM3304274,GSM3304275,GSM3304276,GSM3304277,GSM3304278,GSM3304279,GSM3304280,GSM3304281,GSM3304282,GSM3304283,GSM3304284,GSM3304285,GSM3304286,GSM3304287,GSM3304288,GSM3304289,GSM3304290,GSM3304291,GSM3304292,GSM3304293,GSM3304294,GSM3304295,GSM3304296,GSM3304297,GSM3304298
2
+ Alzheimers_Disease,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,60.0,64.0,72.0,73.0,75.0,92.0,60.0,69.0,72.0,87.0,60.0,64.0,72.0,73.0,75.0,92.0,60.0,60.0,69.0,72.0,87.0,60.0,64.0,72.0,73.0,92.0,60.0,60.0,69.0,72.0,87.0
4
+ Gender,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE122063.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3454053,GSM3454054,GSM3454055,GSM3454056,GSM3454057,GSM3454058,GSM3454059,GSM3454060,GSM3454061,GSM3454062,GSM3454063,GSM3454064,GSM3454065,GSM3454066,GSM3454067,GSM3454068,GSM3454069,GSM3454070,GSM3454071,GSM3454072,GSM3454073,GSM3454074,GSM3454075,GSM3454076,GSM3454077,GSM3454078,GSM3454079,GSM3454080,GSM3454081,GSM3454082,GSM3454083,GSM3454084,GSM3454085,GSM3454086,GSM3454087,GSM3454088,GSM3454089,GSM3454090,GSM3454091,GSM3454092,GSM3454093,GSM3454094,GSM3454095,GSM3454096,GSM3454097,GSM3454098,GSM3454099,GSM3454100,GSM3454101,GSM3454102,GSM3454103,GSM3454104,GSM3454105,GSM3454106,GSM3454107,GSM3454108,GSM3454109,GSM3454110,GSM3454111,GSM3454112,GSM3454113,GSM3454114,GSM3454115,GSM3454116,GSM3454117,GSM3454118,GSM3454119,GSM3454120,GSM3454121,GSM3454122,GSM3454123,GSM3454124,GSM3454125,GSM3454126,GSM3454127,GSM3454128,GSM3454129,GSM3454130,GSM3454131,GSM3454132,GSM3454133,GSM3454134,GSM3454135,GSM3454136,GSM3454137,GSM3454138,GSM3454139,GSM3454140,GSM3454141,GSM3454142,GSM3454143,GSM3454144,GSM3454145,GSM3454146,GSM3454147,GSM3454148,GSM3454149,GSM3454150,GSM3454151,GSM3454152,GSM3454153,GSM3454154,GSM3454155,GSM3454156,GSM3454157,GSM3454158,GSM3454159,GSM3454160,GSM3454161,GSM3454162,GSM3454163,GSM3454164,GSM3454165,GSM3454166,GSM3454167,GSM3454168,GSM3454169,GSM3454170,GSM3454171,GSM3454172,GSM3454173,GSM3454174,GSM3454175,GSM3454176,GSM3454177,GSM3454178,GSM3454179,GSM3454180,GSM3454181,GSM3454182,GSM3454183,GSM3454184,GSM3454185,GSM3454186,GSM3454187,GSM3454188
2
+ Alzheimers_Disease,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,75.0,75.0,75.0,75.0,75.0,75.0,75.0,75.0,90.0,90.0,90.0,90.0,78.0,78.0,78.0,78.0,82.0,82.0,82.0,82.0,96.0,96.0,96.0,96.0,77.0,77.0,77.0,77.0,93.0,93.0,93.0,93.0,62.0,62.0,62.0,62.0,82.0,82.0,82.0,82.0,82.0,82.0,82.0,82.0,89.0,89.0,89.0,89.0,82.0,82.0,82.0,82.0,77.0,77.0,77.0,77.0,79.0,79.0,79.0,79.0,81.0,81.0,81.0,81.0,81.0,81.0,81.0,81.0,75.0,75.0,75.0,75.0,81.0,81.0,81.0,81.0,91.0,91.0,91.0,91.0,83.0,83.0,83.0,83.0,63.0,63.0,63.0,63.0,88.0,88.0,88.0,88.0,74.0,74.0,74.0,74.0,73.0,73.0,73.0,73.0,87.0,87.0,87.0,87.0,73.0,73.0,73.0,73.0,81.0,81.0,81.0,81.0,81.0,81.0,81.0,81.0,60.0,60.0,60.0,60.0,91.0,91.0,91.0,91.0,81.0,81.0,81.0,81.0,77.0,77.0,77.0,77.0,89.0,89.0,89.0,89.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE132903.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM3895951,GSM3895952,GSM3895953,GSM3895954,GSM3895955,GSM3895956,GSM3895957,GSM3895958,GSM3895959,GSM3895960,GSM3895961,GSM3895962,GSM3895963,GSM3895964,GSM3895965,GSM3895966,GSM3895967,GSM3895968,GSM3895969,GSM3895970,GSM3895971,GSM3895972,GSM3895973,GSM3895974,GSM3895975,GSM3895976,GSM3895977,GSM3895978,GSM3895979,GSM3895980,GSM3895981,GSM3895982,GSM3895983,GSM3895984,GSM3895985,GSM3895986,GSM3895987,GSM3895988,GSM3895989,GSM3895990,GSM3895991,GSM3895992,GSM3895993,GSM3895994,GSM3895995,GSM3895996,GSM3895997,GSM3895998,GSM3895999,GSM3896000,GSM3896001,GSM3896002,GSM3896003,GSM3896004,GSM3896005,GSM3896006,GSM3896007,GSM3896008,GSM3896009,GSM3896010,GSM3896011,GSM3896012,GSM3896013,GSM3896014,GSM3896015,GSM3896016,GSM3896017,GSM3896018,GSM3896019,GSM3896020,GSM3896021,GSM3896022,GSM3896023,GSM3896024,GSM3896025,GSM3896026,GSM3896027,GSM3896028,GSM3896029,GSM3896030,GSM3896031,GSM3896032,GSM3896033,GSM3896034,GSM3896035,GSM3896036,GSM3896037,GSM3896038,GSM3896039,GSM3896040,GSM3896041,GSM3896042,GSM3896043,GSM3896044,GSM3896045,GSM3896046,GSM3896047,GSM3896048,GSM3896049,GSM3896050,GSM3896051,GSM3896052,GSM3896053,GSM3896054,GSM3896055,GSM3896056,GSM3896057,GSM3896058,GSM3896059,GSM3896060,GSM3896061,GSM3896062,GSM3896063,GSM3896064,GSM3896065,GSM3896066,GSM3896067,GSM3896068,GSM3896069,GSM3896070,GSM3896071,GSM3896072,GSM3896073,GSM3896074,GSM3896075,GSM3896076,GSM3896077,GSM3896078,GSM3896079,GSM3896080,GSM3896081,GSM3896082,GSM3896083,GSM3896084,GSM3896085,GSM3896086,GSM3896087,GSM3896088,GSM3896089,GSM3896090,GSM3896091,GSM3896092,GSM3896093,GSM3896094,GSM3896095,GSM3896096,GSM3896097,GSM3896098,GSM3896099,GSM3896100,GSM3896101,GSM3896102,GSM3896103,GSM3896104,GSM3896105,GSM3896106,GSM3896107,GSM3896108,GSM3896109,GSM3896110,GSM3896111,GSM3896112,GSM3896113,GSM3896114,GSM3896115,GSM3896116,GSM3896117,GSM3896118,GSM3896119,GSM3896120,GSM3896121,GSM3896122,GSM3896123,GSM3896124,GSM3896125,GSM3896126,GSM3896127,GSM3896128,GSM3896129,GSM3896130,GSM3896131,GSM3896132,GSM3896133,GSM3896134,GSM3896135,GSM3896136,GSM3896137,GSM3896138,GSM3896139,GSM3896140,GSM3896141,GSM3896142,GSM3896143,GSM3896144,GSM3896145
2
+ Alzheimers_Disease,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,90.0,82.0,88.0,92.0,91.0,87.0,86.0,78.0,87.0,79.0,77.0,77.0,88.0,85.0,95.0,102.0,89.0,70.0,82.0,73.0,90.0,94.0,96.0,85.0,84.0,83.0,90.0,87.0,85.0,83.0,84.0,88.0,98.0,85.0,86.0,87.0,89.0,92.0,78.0,77.0,91.0,100.0,82.0,87.0,73.0,75.0,82.0,90.0,96.0,84.0,80.0,86.0,91.0,91.0,94.0,87.0,75.0,74.0,76.0,71.0,87.0,90.0,80.0,84.0,80.0,89.0,86.0,80.0,92.0,83.0,86.0,91.0,95.0,95.0,82.0,85.0,87.0,95.0,85.0,91.0,89.0,80.0,87.0,92.0,77.0,84.0,91.0,87.0,97.0,87.0,78.0,76.0,81.0,80.0,86.0,81.0,79.0,91.0,91.0,89.0,82.0,92.0,86.0,82.0,86.0,80.0,87.0,92.0,90.0,88.0,90.0,90.0,72.0,87.0,75.0,86.0,95.0,95.0,88.0,87.0,81.0,83.0,85.0,95.0,81.0,83.0,85.0,85.0,94.0,97.0,82.0,91.0,92.0,70.0,84.0,86.0,95.0,88.0,79.0,87.0,73.0,90.0,83.0,85.0,74.0,71.0,78.0,82.0,85.0,96.0,70.0,78.0,77.0,87.0,84.0,98.0,75.0,76.0,94.0,84.0,75.0,75.0,92.0,81.0,77.0,88.0,87.0,77.0,93.0,97.0,89.0,88.0,73.0,91.0,91.0,78.0,89.0,78.0,90.0,85.0,85.0,82.0,82.0,72.0,82.0,81.0,81.0,79.0,91.0,81.0,70.0,76.0,90.0,83.0,83.0
4
+ Gender,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE137202.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4072905,GSM4072906,GSM4072907,GSM4072908,GSM4072909,GSM4072910,GSM4072911,GSM4072912,GSM4072913,GSM4072914,GSM4072915,GSM4072916,GSM4072917,GSM4072918,GSM4072919,GSM4072920,GSM4072921,GSM4072922,GSM4072923,GSM4072924,GSM4072925,GSM4072926,GSM4072927,GSM4072928,GSM4072929,GSM4072930,GSM4072931,GSM4072932,GSM4072933,GSM4072934
2
+ Alzheimers_Disease,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE139384.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM4140293,GSM4140294,GSM4140295,GSM4140296,GSM4140297,GSM4140298,GSM4140299,GSM4140300,GSM4140301,GSM4140302,GSM4140303,GSM4140304,GSM4140305,GSM4140306,GSM4140307,GSM4140308,GSM4140309,GSM4140310,GSM4140311,GSM4140312,GSM4140313,GSM4140314,GSM4140315,GSM4140316,GSM4140317,GSM4140318,GSM4140319,GSM4140320,GSM4140321,GSM4140322,GSM4140323,GSM4140324,GSM4140325
2
+ Alzheimers_Disease,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,
3
+ Age,,,,,,,,,,,,,66.0,77.0,70.0,74.0,76.0,60.0,79.0,71.0,63.0,65.0,70.0,81.0,70.0,74.0,73.0,72.0,72.0,75.0,85.0,76.0,74.0
4
+ Gender,,,,,,,,,,,,,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE167559.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM5107459,GSM5107460,GSM5107461,GSM5107462,GSM5107463,GSM5107464,GSM5107465,GSM5107466,GSM5107467,GSM5107468,GSM5107469,GSM5107470,GSM5107471,GSM5107472,GSM5107473,GSM5107474,GSM5107475,GSM5107476,GSM5107477,GSM5107478,GSM5107479,GSM5107480,GSM5107481,GSM5107482,GSM5107483,GSM5107484,GSM5107485,GSM5107486,GSM5107487,GSM5107488,GSM5107489,GSM5107490,GSM5107491,GSM5107492,GSM5107493,GSM5107494,GSM5107495,GSM5107496,GSM5107497,GSM5107498,GSM5107499,GSM5107500,GSM5107501,GSM5107502,GSM5107503,GSM5107504,GSM5107505,GSM5107506,GSM5107507,GSM5107508,GSM5107509,GSM5107510,GSM5107511,GSM5107512,GSM5107513,GSM5107514,GSM5107515,GSM5107516,GSM5107517,GSM5107518,GSM5107519,GSM5107520,GSM5107521,GSM5107522,GSM5107523,GSM5107524,GSM5107525,GSM5107526,GSM5107527,GSM5107528,GSM5107529,GSM5107530,GSM5107531,GSM5107532,GSM5107533,GSM5107534,GSM5107535,GSM5107536,GSM5107537,GSM5107538,GSM5107539,GSM5107540,GSM5107541,GSM5107542
2
+ Alzheimers_Disease,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,83.0,75.0,87.0,73.0,79.0,83.0,85.0,69.0,76.0,88.0,83.0,87.0,82.0,83.0,73.0,80.0,84.0,73.0,82.0,71.0,79.0,77.0,87.0,77.0,83.0,79.0,80.0,81.0,74.0,80.0,83.0,84.0,86.0,86.0,81.0,74.0,88.0,79.0,69.0,77.0,82.0,85.0,75.0,75.0,85.0,85.0,78.0,77.0,80.0,69.0,78.0,86.0,79.0,65.0,82.0,67.0,84.0,71.0,75.0,86.0,83.0,74.0,76.0,77.0,65.0,77.0,79.0,79.0,70.0,73.0,88.0,85.0,76.0,87.0,65.0,83.0,77.0,70.0,85.0,67.0,77.0,84.0,88.0,75.0
4
+ Gender,1.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE185909.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM5625602,GSM5625603,GSM5625604,GSM5625605,GSM5625606,GSM5625607,GSM5625608,GSM5625609,GSM5625610,GSM5625611,GSM5625612,GSM5625613,GSM5625614,GSM5625615,GSM5625616,GSM5625617,GSM5625618,GSM5625619,GSM5625620,GSM5625621,GSM5625622,GSM5625623,GSM5625624,GSM5625625,GSM5625626,GSM5625627,GSM5625628,GSM5625629,GSM5625630,GSM5625631,GSM5625632,GSM5625633,GSM5625634,GSM5625635,GSM5625636
2
+ Alzheimers_Disease,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,83.8110882957,83.8110882957,80.5338809035,80.5338809035,85.1635865845,85.1635865845,83.3976728268,83.3976728268,76.3093771389,80.3230663929,80.3230663929,80.3230663929,80.3230663929,92.1916495551,92.1916495551,92.1916495551,85.6399726215,85.6399726215,86.2477754962,86.2477754962,86.2477754962,87.3839835729,87.3839835729,82.9349760438,82.9349760438,89.2156057495,89.2156057495,88.0465434634,88.0465434634,90.0314852841,90.0314852841,90.0314852841,90.0314852841,72.7063655031,72.7063655031
4
+ Gender,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE214417.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM6567822,GSM6567823,GSM6567824,GSM6567825,GSM6567826,GSM6567827,GSM6567828,GSM6567829,GSM6567830,GSM6567831,GSM6567832,GSM6567833,GSM6567834,GSM6567835,GSM6567836,GSM6567837,GSM6567838,GSM6567839,GSM6567840,GSM6567841,GSM6567842,GSM6567843,GSM6567844,GSM6567845
2
+ Alzheimers_Disease,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,8.0,8.0,8.0,8.0,8.0,8.0,8.0,8.0,8.0,8.0,8.0,9.0,9.0,9.0,9.0,9.0,9.0,9.0,9.0,9.0,9.0,9.0,9.0,9.0
4
+ Gender,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Alzheimers_Disease/clinical_data/GSE243243.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM7781567,GSM7781568,GSM7781569,GSM7781570,GSM7781571,GSM7781572,GSM7781573,GSM7781574,GSM7781575,GSM7781576,GSM7781577,GSM7781578,GSM7781579,GSM7781580,GSM7781581,GSM7781582,GSM7781583,GSM7781584,GSM7781585,GSM7781586,GSM7781587,GSM7781588,GSM7781589,GSM7781590,GSM7781591,GSM7781592,GSM7781593,GSM7781594,GSM7781595,GSM7781596,GSM7781597,GSM7781598,GSM7781599,GSM7781600,GSM7781601,GSM7781602,GSM7781603,GSM7781604,GSM7781605,GSM7781606,GSM7781607,GSM7781608,GSM7781609,GSM7781610,GSM7781611,GSM7781612,GSM7781613,GSM7781614,GSM7781615,GSM7781616,GSM7781617,GSM7781618,GSM7781619,GSM7781620,GSM7781621,GSM7781622,GSM7781623,GSM7781624,GSM7781625,GSM7781626,GSM7781627,GSM7781628,GSM7781629,GSM7781630,GSM7781631,GSM7781632,GSM7781633,GSM7781634,GSM7781635,GSM7781636,GSM7781637,GSM7781638,GSM7781639,GSM7781640,GSM7781641,GSM7781642,GSM7781643,GSM7781644,GSM7781645,GSM7781646,GSM7781647,GSM7781648,GSM7781649,GSM7781650,GSM7781651,GSM7781652,GSM7781653,GSM7781654,GSM7781655,GSM7781656,GSM7781657,GSM7781658,GSM7781659
2
+ Alzheimers_Disease,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Alzheimers_Disease/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,1149 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sampleID,Alzheimers_Disease,Age,Gender
2
+ TCGA-02-0001-01,1,44.0,0.0
3
+ TCGA-02-0003-01,1,50.0,1.0
4
+ TCGA-02-0004-01,1,59.0,1.0
5
+ TCGA-02-0006-01,1,56.0,0.0
6
+ TCGA-02-0007-01,1,40.0,0.0
7
+ TCGA-02-0009-01,1,61.0,0.0
8
+ TCGA-02-0010-01,1,20.0,0.0
9
+ TCGA-02-0011-01,1,18.0,0.0
10
+ TCGA-02-0014-01,1,25.0,1.0
11
+ TCGA-02-0015-01,1,50.0,1.0
12
+ TCGA-02-0016-01,1,50.0,1.0
13
+ TCGA-02-0021-01,1,43.0,0.0
14
+ TCGA-02-0023-01,1,38.0,0.0
15
+ TCGA-02-0024-01,1,35.0,1.0
16
+ TCGA-02-0025-01,1,47.0,1.0
17
+ TCGA-02-0026-01,1,27.0,1.0
18
+ TCGA-02-0027-01,1,33.0,0.0
19
+ TCGA-02-0028-01,1,39.0,1.0
20
+ TCGA-02-0033-01,1,54.0,1.0
21
+ TCGA-02-0034-01,1,60.0,1.0
22
+ TCGA-02-0037-01,1,74.0,0.0
23
+ TCGA-02-0038-01,1,48.0,0.0
24
+ TCGA-02-0039-01,1,54.0,1.0
25
+ TCGA-02-0043-01,1,54.0,0.0
26
+ TCGA-02-0046-01,1,61.0,1.0
27
+ TCGA-02-0047-01,1,78.0,1.0
28
+ TCGA-02-0048-01,1,80.0,1.0
29
+ TCGA-02-0051-01,1,43.0,1.0
30
+ TCGA-02-0052-01,1,49.0,1.0
31
+ TCGA-02-0054-01,1,44.0,0.0
32
+ TCGA-02-0055-01,1,62.0,0.0
33
+ TCGA-02-0057-01,1,66.0,0.0
34
+ TCGA-02-0058-01,1,28.0,0.0
35
+ TCGA-02-0059-01,1,68.0,0.0
36
+ TCGA-02-0060-01,1,66.0,0.0
37
+ TCGA-02-0064-01,1,50.0,1.0
38
+ TCGA-02-0068-01,1,57.0,1.0
39
+ TCGA-02-0069-01,1,31.0,0.0
40
+ TCGA-02-0070-01,1,70.0,1.0
41
+ TCGA-02-0071-01,1,53.0,1.0
42
+ TCGA-02-0074-01,1,68.0,0.0
43
+ TCGA-02-0075-01,1,63.0,1.0
44
+ TCGA-02-0079-01,1,57.0,1.0
45
+ TCGA-02-0080-01,1,28.0,1.0
46
+ TCGA-02-0083-01,1,59.0,0.0
47
+ TCGA-02-0084-01,1,36.0,0.0
48
+ TCGA-02-0085-01,1,63.0,0.0
49
+ TCGA-02-0086-01,1,45.0,0.0
50
+ TCGA-02-0087-01,1,27.0,0.0
51
+ TCGA-02-0089-01,1,52.0,1.0
52
+ TCGA-02-0099-01,1,46.0,1.0
53
+ TCGA-02-0102-01,1,42.0,1.0
54
+ TCGA-02-0104-01,1,29.0,0.0
55
+ TCGA-02-0106-01,1,54.0,1.0
56
+ TCGA-02-0107-01,1,56.0,1.0
57
+ TCGA-02-0111-01,1,56.0,1.0
58
+ TCGA-02-0113-01,1,43.0,0.0
59
+ TCGA-02-0114-01,1,37.0,0.0
60
+ TCGA-02-0115-01,1,52.0,1.0
61
+ TCGA-02-0116-01,1,51.0,1.0
62
+ TCGA-02-0258-01,1,36.0,0.0
63
+ TCGA-02-0260-01,1,54.0,1.0
64
+ TCGA-02-0266-01,1,14.0,1.0
65
+ TCGA-02-0269-01,1,68.0,1.0
66
+ TCGA-02-0271-01,1,26.0,1.0
67
+ TCGA-02-0281-01,1,78.0,0.0
68
+ TCGA-02-0285-01,1,50.0,0.0
69
+ TCGA-02-0289-01,1,57.0,1.0
70
+ TCGA-02-0290-01,1,49.0,1.0
71
+ TCGA-02-0317-01,1,40.0,1.0
72
+ TCGA-02-0321-01,1,74.0,1.0
73
+ TCGA-02-0324-01,1,69.0,0.0
74
+ TCGA-02-0325-01,1,61.0,1.0
75
+ TCGA-02-0326-01,1,82.0,0.0
76
+ TCGA-02-0330-01,1,51.0,0.0
77
+ TCGA-02-0332-01,1,46.0,0.0
78
+ TCGA-02-0333-01,1,77.0,0.0
79
+ TCGA-02-0337-01,1,48.0,1.0
80
+ TCGA-02-0338-01,1,41.0,1.0
81
+ TCGA-02-0339-01,1,67.0,1.0
82
+ TCGA-02-0422-01,1,50.0,1.0
83
+ TCGA-02-0430-01,1,67.0,0.0
84
+ TCGA-02-0432-01,1,36.0,1.0
85
+ TCGA-02-0439-01,1,70.0,0.0
86
+ TCGA-02-0440-01,1,62.0,1.0
87
+ TCGA-02-0446-01,1,61.0,1.0
88
+ TCGA-02-0451-01,1,62.0,0.0
89
+ TCGA-02-0456-01,1,67.0,0.0
90
+ TCGA-02-2466-01,1,61.0,1.0
91
+ TCGA-02-2470-01,1,57.0,1.0
92
+ TCGA-02-2483-01,1,43.0,1.0
93
+ TCGA-02-2485-01,1,53.0,1.0
94
+ TCGA-02-2486-01,1,64.0,1.0
95
+ TCGA-06-0119-01,1,81.0,0.0
96
+ TCGA-06-0121-01,1,,
97
+ TCGA-06-0122-01,1,84.0,0.0
98
+ TCGA-06-0124-01,1,67.0,1.0
99
+ TCGA-06-0125-01,1,63.0,0.0
100
+ TCGA-06-0125-02,1,63.0,0.0
101
+ TCGA-06-0126-01,1,86.0,1.0
102
+ TCGA-06-0127-01,1,67.0,1.0
103
+ TCGA-06-0128-01,1,66.0,1.0
104
+ TCGA-06-0129-01,1,30.0,1.0
105
+ TCGA-06-0130-01,1,54.0,1.0
106
+ TCGA-06-0132-01,1,49.0,1.0
107
+ TCGA-06-0133-01,1,64.0,1.0
108
+ TCGA-06-0137-01,1,63.0,0.0
109
+ TCGA-06-0138-01,1,43.0,1.0
110
+ TCGA-06-0139-01,1,40.0,1.0
111
+ TCGA-06-0140-01,1,86.0,1.0
112
+ TCGA-06-0141-01,1,62.0,1.0
113
+ TCGA-06-0142-01,1,81.0,1.0
114
+ TCGA-06-0143-01,1,58.0,1.0
115
+ TCGA-06-0145-01,1,53.0,0.0
116
+ TCGA-06-0146-01,1,33.0,0.0
117
+ TCGA-06-0147-01,1,51.0,0.0
118
+ TCGA-06-0148-01,1,76.0,1.0
119
+ TCGA-06-0149-01,1,74.0,0.0
120
+ TCGA-06-0150-01,1,45.0,1.0
121
+ TCGA-06-0151-01,1,32.0,0.0
122
+ TCGA-06-0152-01,1,68.0,1.0
123
+ TCGA-06-0152-02,1,68.0,1.0
124
+ TCGA-06-0154-01,1,54.0,1.0
125
+ TCGA-06-0155-01,1,61.0,1.0
126
+ TCGA-06-0156-01,1,57.0,1.0
127
+ TCGA-06-0157-01,1,63.0,0.0
128
+ TCGA-06-0158-01,1,73.0,1.0
129
+ TCGA-06-0159-01,1,74.0,1.0
130
+ TCGA-06-0160-01,1,56.0,0.0
131
+ TCGA-06-0162-01,1,47.0,0.0
132
+ TCGA-06-0164-01,1,47.0,1.0
133
+ TCGA-06-0165-01,1,52.0,1.0
134
+ TCGA-06-0166-01,1,51.0,1.0
135
+ TCGA-06-0167-01,1,44.0,1.0
136
+ TCGA-06-0168-01,1,59.0,0.0
137
+ TCGA-06-0169-01,1,68.0,1.0
138
+ TCGA-06-0171-01,1,65.0,1.0
139
+ TCGA-06-0171-02,1,65.0,1.0
140
+ TCGA-06-0173-01,1,72.0,0.0
141
+ TCGA-06-0174-01,1,54.0,1.0
142
+ TCGA-06-0175-01,1,69.0,1.0
143
+ TCGA-06-0176-01,1,34.0,1.0
144
+ TCGA-06-0177-01,1,64.0,1.0
145
+ TCGA-06-0178-01,1,38.0,1.0
146
+ TCGA-06-0179-01,1,64.0,1.0
147
+ TCGA-06-0182-01,1,76.0,1.0
148
+ TCGA-06-0184-01,1,63.0,1.0
149
+ TCGA-06-0185-01,1,54.0,1.0
150
+ TCGA-06-0187-01,1,69.0,1.0
151
+ TCGA-06-0188-01,1,71.0,1.0
152
+ TCGA-06-0189-01,1,55.0,1.0
153
+ TCGA-06-0190-01,1,62.0,1.0
154
+ TCGA-06-0190-02,1,62.0,1.0
155
+ TCGA-06-0192-01,1,58.0,1.0
156
+ TCGA-06-0194-01,1,37.0,0.0
157
+ TCGA-06-0195-01,1,63.0,1.0
158
+ TCGA-06-0197-01,1,65.0,0.0
159
+ TCGA-06-0201-01,1,51.0,0.0
160
+ TCGA-06-0206-01,1,40.0,1.0
161
+ TCGA-06-0208-01,1,52.0,0.0
162
+ TCGA-06-0209-01,1,76.0,1.0
163
+ TCGA-06-0210-01,1,72.0,0.0
164
+ TCGA-06-0210-02,1,72.0,0.0
165
+ TCGA-06-0211-01,1,47.0,1.0
166
+ TCGA-06-0211-02,1,47.0,1.0
167
+ TCGA-06-0213-01,1,55.0,0.0
168
+ TCGA-06-0214-01,1,66.0,1.0
169
+ TCGA-06-0216-01,1,61.0,0.0
170
+ TCGA-06-0219-01,1,67.0,1.0
171
+ TCGA-06-0221-01,1,31.0,1.0
172
+ TCGA-06-0221-02,1,31.0,1.0
173
+ TCGA-06-0237-01,1,75.0,0.0
174
+ TCGA-06-0238-01,1,46.0,1.0
175
+ TCGA-06-0240-01,1,57.0,1.0
176
+ TCGA-06-0241-01,1,65.0,0.0
177
+ TCGA-06-0394-01,1,51.0,1.0
178
+ TCGA-06-0397-01,1,57.0,0.0
179
+ TCGA-06-0402-01,1,71.0,1.0
180
+ TCGA-06-0409-01,1,43.0,1.0
181
+ TCGA-06-0410-01,1,76.0,0.0
182
+ TCGA-06-0412-01,1,56.0,0.0
183
+ TCGA-06-0413-01,1,77.0,0.0
184
+ TCGA-06-0414-01,1,63.0,1.0
185
+ TCGA-06-0644-01,1,71.0,1.0
186
+ TCGA-06-0645-01,1,55.0,0.0
187
+ TCGA-06-0646-01,1,60.0,1.0
188
+ TCGA-06-0648-01,1,77.0,1.0
189
+ TCGA-06-0649-01,1,73.0,0.0
190
+ TCGA-06-0650-01,1,39.0,0.0
191
+ TCGA-06-0675-11,0,,
192
+ TCGA-06-0678-11,0,,
193
+ TCGA-06-0680-11,0,,
194
+ TCGA-06-0681-11,0,,
195
+ TCGA-06-0686-01,1,53.0,1.0
196
+ TCGA-06-0743-01,1,69.0,1.0
197
+ TCGA-06-0744-01,1,66.0,1.0
198
+ TCGA-06-0745-01,1,59.0,1.0
199
+ TCGA-06-0747-01,1,53.0,1.0
200
+ TCGA-06-0749-01,1,50.0,1.0
201
+ TCGA-06-0750-01,1,43.0,1.0
202
+ TCGA-06-0875-01,1,61.0,0.0
203
+ TCGA-06-0876-01,1,72.0,0.0
204
+ TCGA-06-0877-01,1,78.0,1.0
205
+ TCGA-06-0878-01,1,74.0,1.0
206
+ TCGA-06-0879-01,1,52.0,1.0
207
+ TCGA-06-0881-01,1,50.0,1.0
208
+ TCGA-06-0882-01,1,30.0,1.0
209
+ TCGA-06-0939-01,1,79.0,0.0
210
+ TCGA-06-1084-01,1,54.0,1.0
211
+ TCGA-06-1086-01,1,42.0,1.0
212
+ TCGA-06-1087-01,1,75.0,1.0
213
+ TCGA-06-1800-01,1,61.0,1.0
214
+ TCGA-06-1801-01,1,56.0,0.0
215
+ TCGA-06-1802-01,1,61.0,1.0
216
+ TCGA-06-1804-01,1,81.0,0.0
217
+ TCGA-06-1805-01,1,28.0,0.0
218
+ TCGA-06-1806-01,1,47.0,1.0
219
+ TCGA-06-2557-01,1,76.0,1.0
220
+ TCGA-06-2558-01,1,75.0,0.0
221
+ TCGA-06-2559-01,1,83.0,1.0
222
+ TCGA-06-2561-01,1,53.0,0.0
223
+ TCGA-06-2562-01,1,81.0,1.0
224
+ TCGA-06-2563-01,1,72.0,0.0
225
+ TCGA-06-2564-01,1,50.0,1.0
226
+ TCGA-06-2565-01,1,59.0,1.0
227
+ TCGA-06-2566-01,1,23.0,0.0
228
+ TCGA-06-2567-01,1,65.0,1.0
229
+ TCGA-06-2569-01,1,24.0,0.0
230
+ TCGA-06-2570-01,1,21.0,0.0
231
+ TCGA-06-5408-01,1,54.0,0.0
232
+ TCGA-06-5410-01,1,72.0,0.0
233
+ TCGA-06-5411-01,1,51.0,1.0
234
+ TCGA-06-5412-01,1,78.0,0.0
235
+ TCGA-06-5413-01,1,67.0,1.0
236
+ TCGA-06-5414-01,1,61.0,1.0
237
+ TCGA-06-5415-01,1,60.0,1.0
238
+ TCGA-06-5416-01,1,23.0,0.0
239
+ TCGA-06-5417-01,1,45.0,0.0
240
+ TCGA-06-5418-01,1,75.0,0.0
241
+ TCGA-06-5856-01,1,58.0,1.0
242
+ TCGA-06-5858-01,1,45.0,0.0
243
+ TCGA-06-5859-01,1,63.0,1.0
244
+ TCGA-06-6388-01,1,64.0,0.0
245
+ TCGA-06-6389-01,1,49.0,0.0
246
+ TCGA-06-6390-01,1,58.0,1.0
247
+ TCGA-06-6391-01,1,44.0,0.0
248
+ TCGA-06-6693-01,1,64.0,0.0
249
+ TCGA-06-6694-01,1,76.0,0.0
250
+ TCGA-06-6695-01,1,64.0,1.0
251
+ TCGA-06-6697-01,1,65.0,1.0
252
+ TCGA-06-6698-01,1,53.0,0.0
253
+ TCGA-06-6699-01,1,58.0,0.0
254
+ TCGA-06-6700-01,1,76.0,1.0
255
+ TCGA-06-6701-01,1,60.0,1.0
256
+ TCGA-06-A5U0-01,1,21.0,0.0
257
+ TCGA-06-A5U1-01,1,78.0,0.0
258
+ TCGA-06-A6S0-01,1,79.0,1.0
259
+ TCGA-06-A6S1-01,1,53.0,0.0
260
+ TCGA-06-A7TK-01,1,64.0,1.0
261
+ TCGA-06-A7TL-01,1,30.0,0.0
262
+ TCGA-06-AABW-11,0,,
263
+ TCGA-08-0244-01,1,62.0,1.0
264
+ TCGA-08-0245-01,1,31.0,0.0
265
+ TCGA-08-0246-01,1,57.0,0.0
266
+ TCGA-08-0344-01,1,66.0,1.0
267
+ TCGA-08-0345-01,1,71.0,0.0
268
+ TCGA-08-0346-01,1,69.0,1.0
269
+ TCGA-08-0347-01,1,50.0,1.0
270
+ TCGA-08-0348-01,1,63.0,1.0
271
+ TCGA-08-0349-01,1,46.0,1.0
272
+ TCGA-08-0350-01,1,32.0,1.0
273
+ TCGA-08-0351-01,1,40.0,1.0
274
+ TCGA-08-0352-01,1,79.0,1.0
275
+ TCGA-08-0353-01,1,58.0,1.0
276
+ TCGA-08-0354-01,1,52.0,0.0
277
+ TCGA-08-0355-01,1,30.0,0.0
278
+ TCGA-08-0356-01,1,59.0,0.0
279
+ TCGA-08-0357-01,1,49.0,1.0
280
+ TCGA-08-0358-01,1,50.0,1.0
281
+ TCGA-08-0359-01,1,59.0,0.0
282
+ TCGA-08-0360-01,1,76.0,1.0
283
+ TCGA-08-0373-01,1,69.0,1.0
284
+ TCGA-08-0375-01,1,51.0,0.0
285
+ TCGA-08-0380-01,1,74.0,0.0
286
+ TCGA-08-0385-01,1,71.0,1.0
287
+ TCGA-08-0386-01,1,74.0,1.0
288
+ TCGA-08-0389-01,1,59.0,1.0
289
+ TCGA-08-0390-01,1,69.0,1.0
290
+ TCGA-08-0392-01,1,60.0,1.0
291
+ TCGA-08-0509-01,1,63.0,1.0
292
+ TCGA-08-0510-01,1,75.0,1.0
293
+ TCGA-08-0511-01,1,69.0,1.0
294
+ TCGA-08-0512-01,1,48.0,1.0
295
+ TCGA-08-0514-01,1,69.0,0.0
296
+ TCGA-08-0516-01,1,14.0,1.0
297
+ TCGA-08-0517-01,1,34.0,0.0
298
+ TCGA-08-0518-01,1,60.0,0.0
299
+ TCGA-08-0520-01,1,70.0,1.0
300
+ TCGA-08-0521-01,1,17.0,1.0
301
+ TCGA-08-0522-01,1,61.0,1.0
302
+ TCGA-08-0524-01,1,17.0,0.0
303
+ TCGA-08-0525-01,1,52.0,1.0
304
+ TCGA-08-0529-01,1,56.0,0.0
305
+ TCGA-08-0531-01,1,64.0,1.0
306
+ TCGA-12-0615-01,1,78.0,0.0
307
+ TCGA-12-0616-01,1,36.0,0.0
308
+ TCGA-12-0618-01,1,49.0,1.0
309
+ TCGA-12-0619-01,1,60.0,1.0
310
+ TCGA-12-0620-01,1,57.0,1.0
311
+ TCGA-12-0654-01,1,48.0,0.0
312
+ TCGA-12-0656-01,1,48.0,0.0
313
+ TCGA-12-0657-01,1,69.0,1.0
314
+ TCGA-12-0662-01,1,51.0,1.0
315
+ TCGA-12-0670-01,1,60.0,1.0
316
+ TCGA-12-0688-01,1,74.0,1.0
317
+ TCGA-12-0691-01,1,63.0,1.0
318
+ TCGA-12-0692-01,1,75.0,0.0
319
+ TCGA-12-0703-01,1,46.0,1.0
320
+ TCGA-12-0707-01,1,55.0,1.0
321
+ TCGA-12-0769-01,1,52.0,1.0
322
+ TCGA-12-0772-01,1,46.0,1.0
323
+ TCGA-12-0773-01,1,24.0,1.0
324
+ TCGA-12-0775-01,1,75.0,0.0
325
+ TCGA-12-0776-01,1,52.0,1.0
326
+ TCGA-12-0778-01,1,53.0,1.0
327
+ TCGA-12-0780-01,1,51.0,0.0
328
+ TCGA-12-0818-01,1,45.0,0.0
329
+ TCGA-12-0819-01,1,49.0,0.0
330
+ TCGA-12-0820-01,1,40.0,1.0
331
+ TCGA-12-0821-01,1,62.0,1.0
332
+ TCGA-12-0822-01,1,46.0,1.0
333
+ TCGA-12-0826-01,1,38.0,0.0
334
+ TCGA-12-0827-01,1,38.0,0.0
335
+ TCGA-12-0828-01,1,57.0,1.0
336
+ TCGA-12-0829-01,1,75.0,1.0
337
+ TCGA-12-1088-01,1,53.0,0.0
338
+ TCGA-12-1089-01,1,64.0,1.0
339
+ TCGA-12-1090-01,1,58.0,1.0
340
+ TCGA-12-1091-01,1,10.0,0.0
341
+ TCGA-12-1092-01,1,58.0,1.0
342
+ TCGA-12-1093-01,1,66.0,0.0
343
+ TCGA-12-1094-01,1,56.0,1.0
344
+ TCGA-12-1095-01,1,65.0,0.0
345
+ TCGA-12-1096-01,1,55.0,1.0
346
+ TCGA-12-1097-01,1,61.0,1.0
347
+ TCGA-12-1098-01,1,75.0,0.0
348
+ TCGA-12-1099-01,1,68.0,0.0
349
+ TCGA-12-1597-01,1,62.0,0.0
350
+ TCGA-12-1598-01,1,75.0,0.0
351
+ TCGA-12-1599-01,1,47.0,0.0
352
+ TCGA-12-1600-01,1,86.0,1.0
353
+ TCGA-12-1602-01,1,58.0,1.0
354
+ TCGA-12-3644-01,1,47.0,0.0
355
+ TCGA-12-3646-01,1,59.0,0.0
356
+ TCGA-12-3648-01,1,61.0,0.0
357
+ TCGA-12-3649-01,1,76.0,1.0
358
+ TCGA-12-3650-01,1,46.0,1.0
359
+ TCGA-12-3651-01,1,77.0,1.0
360
+ TCGA-12-3652-01,1,60.0,1.0
361
+ TCGA-12-3653-01,1,34.0,0.0
362
+ TCGA-12-5295-01,1,60.0,0.0
363
+ TCGA-12-5299-01,1,56.0,0.0
364
+ TCGA-12-5301-01,1,59.0,1.0
365
+ TCGA-14-0736-01,1,49.0,1.0
366
+ TCGA-14-0736-02,1,49.0,1.0
367
+ TCGA-14-0740-01,1,70.0,1.0
368
+ TCGA-14-0781-01,1,49.0,1.0
369
+ TCGA-14-0783-01,1,36.0,0.0
370
+ TCGA-14-0786-01,1,50.0,0.0
371
+ TCGA-14-0787-01,1,69.0,1.0
372
+ TCGA-14-0789-01,1,54.0,1.0
373
+ TCGA-14-0790-01,1,64.0,0.0
374
+ TCGA-14-0812-01,1,65.0,1.0
375
+ TCGA-14-0813-01,1,78.0,1.0
376
+ TCGA-14-0817-01,1,69.0,0.0
377
+ TCGA-14-0862-01,1,60.0,1.0
378
+ TCGA-14-0865-01,1,67.0,1.0
379
+ TCGA-14-0866-01,1,55.0,1.0
380
+ TCGA-14-0867-01,1,67.0,1.0
381
+ TCGA-14-0871-01,1,74.0,0.0
382
+ TCGA-14-1034-01,1,60.0,0.0
383
+ TCGA-14-1034-02,1,60.0,0.0
384
+ TCGA-14-1037-01,1,66.0,0.0
385
+ TCGA-14-1043-01,1,61.0,1.0
386
+ TCGA-14-1395-01,1,52.0,1.0
387
+ TCGA-14-1396-01,1,78.0,0.0
388
+ TCGA-14-1401-01,1,54.0,1.0
389
+ TCGA-14-1402-01,1,58.0,0.0
390
+ TCGA-14-1402-02,1,58.0,0.0
391
+ TCGA-14-1450-01,1,57.0,0.0
392
+ TCGA-14-1451-01,1,39.0,1.0
393
+ TCGA-14-1452-01,1,60.0,1.0
394
+ TCGA-14-1453-01,1,69.0,1.0
395
+ TCGA-14-1454-01,1,54.0,0.0
396
+ TCGA-14-1455-01,1,61.0,1.0
397
+ TCGA-14-1456-01,1,23.0,1.0
398
+ TCGA-14-1458-01,1,54.0,1.0
399
+ TCGA-14-1459-01,1,63.0,0.0
400
+ TCGA-14-1794-01,1,59.0,1.0
401
+ TCGA-14-1795-01,1,66.0,1.0
402
+ TCGA-14-1821-01,1,31.0,1.0
403
+ TCGA-14-1823-01,1,58.0,0.0
404
+ TCGA-14-1825-01,1,70.0,1.0
405
+ TCGA-14-1827-01,1,51.0,1.0
406
+ TCGA-14-1829-01,1,57.0,1.0
407
+ TCGA-14-2554-01,1,52.0,0.0
408
+ TCGA-14-2555-01,1,44.0,0.0
409
+ TCGA-14-3476-01,1,74.0,1.0
410
+ TCGA-14-3477-01,1,38.0,0.0
411
+ TCGA-14-4157-01,1,40.0,1.0
412
+ TCGA-15-0742-01,1,65.0,1.0
413
+ TCGA-15-1444-01,1,21.0,1.0
414
+ TCGA-15-1446-01,1,55.0,1.0
415
+ TCGA-15-1447-01,1,36.0,0.0
416
+ TCGA-15-1449-01,1,65.0,1.0
417
+ TCGA-16-0846-01,1,85.0,1.0
418
+ TCGA-16-0848-01,1,57.0,1.0
419
+ TCGA-16-0849-01,1,54.0,1.0
420
+ TCGA-16-0850-01,1,52.0,0.0
421
+ TCGA-16-0861-01,1,65.0,1.0
422
+ TCGA-16-1045-01,1,49.0,0.0
423
+ TCGA-16-1047-01,1,66.0,0.0
424
+ TCGA-16-1048-01,1,,
425
+ TCGA-16-1055-01,1,48.0,1.0
426
+ TCGA-16-1056-01,1,55.0,1.0
427
+ TCGA-16-1060-01,1,70.0,0.0
428
+ TCGA-16-1062-01,1,57.0,0.0
429
+ TCGA-16-1063-01,1,72.0,1.0
430
+ TCGA-16-1460-01,1,36.0,0.0
431
+ TCGA-19-0955-01,1,71.0,1.0
432
+ TCGA-19-0957-01,1,48.0,0.0
433
+ TCGA-19-0957-02,1,48.0,0.0
434
+ TCGA-19-0960-01,1,83.0,0.0
435
+ TCGA-19-0962-01,1,77.0,0.0
436
+ TCGA-19-0963-01,1,61.0,1.0
437
+ TCGA-19-0964-01,1,70.0,1.0
438
+ TCGA-19-1385-01,1,69.0,1.0
439
+ TCGA-19-1386-01,1,51.0,1.0
440
+ TCGA-19-1387-01,1,81.0,1.0
441
+ TCGA-19-1388-01,1,58.0,1.0
442
+ TCGA-19-1389-01,1,51.0,1.0
443
+ TCGA-19-1389-02,1,51.0,1.0
444
+ TCGA-19-1390-01,1,63.0,0.0
445
+ TCGA-19-1392-01,1,72.0,0.0
446
+ TCGA-19-1786-01,1,64.0,0.0
447
+ TCGA-19-1787-01,1,48.0,1.0
448
+ TCGA-19-1788-01,1,39.0,1.0
449
+ TCGA-19-1789-01,1,69.0,0.0
450
+ TCGA-19-1790-01,1,56.0,1.0
451
+ TCGA-19-1791-01,1,82.0,0.0
452
+ TCGA-19-2619-01,1,55.0,0.0
453
+ TCGA-19-2620-01,1,70.0,1.0
454
+ TCGA-19-2621-01,1,83.0,1.0
455
+ TCGA-19-2623-01,1,65.0,1.0
456
+ TCGA-19-2624-01,1,51.0,1.0
457
+ TCGA-19-2625-01,1,76.0,0.0
458
+ TCGA-19-2629-01,1,60.0,1.0
459
+ TCGA-19-2631-01,1,74.0,0.0
460
+ TCGA-19-4065-01,1,36.0,1.0
461
+ TCGA-19-4065-02,1,36.0,1.0
462
+ TCGA-19-4068-01,1,68.0,0.0
463
+ TCGA-19-5947-01,1,47.0,0.0
464
+ TCGA-19-5950-01,1,52.0,0.0
465
+ TCGA-19-5951-01,1,76.0,0.0
466
+ TCGA-19-5952-01,1,62.0,1.0
467
+ TCGA-19-5953-01,1,58.0,1.0
468
+ TCGA-19-5954-01,1,72.0,0.0
469
+ TCGA-19-5955-01,1,83.0,1.0
470
+ TCGA-19-5956-01,1,53.0,0.0
471
+ TCGA-19-5958-01,1,56.0,1.0
472
+ TCGA-19-5959-01,1,77.0,0.0
473
+ TCGA-19-5960-01,1,56.0,1.0
474
+ TCGA-19-A60I-01,1,39.0,1.0
475
+ TCGA-19-A6J4-01,1,68.0,1.0
476
+ TCGA-19-A6J5-01,1,40.0,1.0
477
+ TCGA-26-1438-01,1,36.0,1.0
478
+ TCGA-26-1439-01,1,63.0,1.0
479
+ TCGA-26-1440-01,1,48.0,1.0
480
+ TCGA-26-1442-01,1,43.0,1.0
481
+ TCGA-26-1443-01,1,60.0,0.0
482
+ TCGA-26-1799-01,1,68.0,1.0
483
+ TCGA-26-5132-01,1,74.0,1.0
484
+ TCGA-26-5133-01,1,59.0,1.0
485
+ TCGA-26-5134-01,1,74.0,1.0
486
+ TCGA-26-5135-01,1,72.0,0.0
487
+ TCGA-26-5136-01,1,78.0,0.0
488
+ TCGA-26-5139-01,1,65.0,0.0
489
+ TCGA-26-6173-01,1,57.0,1.0
490
+ TCGA-26-6174-01,1,65.0,0.0
491
+ TCGA-26-A7UX-01,1,47.0,1.0
492
+ TCGA-27-1830-01,1,57.0,1.0
493
+ TCGA-27-1831-01,1,66.0,1.0
494
+ TCGA-27-1832-01,1,59.0,0.0
495
+ TCGA-27-1833-01,1,67.0,0.0
496
+ TCGA-27-1834-01,1,56.0,1.0
497
+ TCGA-27-1835-01,1,53.0,0.0
498
+ TCGA-27-1836-01,1,33.0,0.0
499
+ TCGA-27-1837-01,1,36.0,1.0
500
+ TCGA-27-1838-01,1,59.0,0.0
501
+ TCGA-27-2518-01,1,52.0,1.0
502
+ TCGA-27-2519-01,1,48.0,1.0
503
+ TCGA-27-2521-01,1,34.0,1.0
504
+ TCGA-27-2523-01,1,63.0,1.0
505
+ TCGA-27-2524-01,1,56.0,1.0
506
+ TCGA-27-2526-01,1,79.0,0.0
507
+ TCGA-27-2527-01,1,81.0,1.0
508
+ TCGA-27-2528-01,1,62.0,1.0
509
+ TCGA-28-1745-01,1,76.0,1.0
510
+ TCGA-28-1746-01,1,77.0,0.0
511
+ TCGA-28-1747-01,1,44.0,1.0
512
+ TCGA-28-1749-01,1,73.0,1.0
513
+ TCGA-28-1750-01,1,40.0,0.0
514
+ TCGA-28-1751-01,1,61.0,0.0
515
+ TCGA-28-1752-01,1,42.0,0.0
516
+ TCGA-28-1753-01,1,53.0,1.0
517
+ TCGA-28-1755-01,1,52.0,0.0
518
+ TCGA-28-1756-01,1,78.0,1.0
519
+ TCGA-28-1757-01,1,71.0,1.0
520
+ TCGA-28-1760-01,1,48.0,1.0
521
+ TCGA-28-2499-01,1,59.0,1.0
522
+ TCGA-28-2501-01,1,,
523
+ TCGA-28-2502-01,1,65.0,1.0
524
+ TCGA-28-2506-01,1,63.0,0.0
525
+ TCGA-28-2509-01,1,77.0,0.0
526
+ TCGA-28-2510-01,1,,
527
+ TCGA-28-2513-01,1,69.0,0.0
528
+ TCGA-28-2514-01,1,45.0,1.0
529
+ TCGA-28-5204-01,1,72.0,1.0
530
+ TCGA-28-5207-01,1,71.0,1.0
531
+ TCGA-28-5208-01,1,52.0,1.0
532
+ TCGA-28-5209-01,1,66.0,0.0
533
+ TCGA-28-5211-01,1,42.0,1.0
534
+ TCGA-28-5213-01,1,72.0,1.0
535
+ TCGA-28-5214-01,1,53.0,1.0
536
+ TCGA-28-5215-01,1,62.0,0.0
537
+ TCGA-28-5216-01,1,52.0,1.0
538
+ TCGA-28-5218-01,1,63.0,1.0
539
+ TCGA-28-5219-01,1,47.0,0.0
540
+ TCGA-28-5220-01,1,67.0,1.0
541
+ TCGA-28-6450-01,1,60.0,1.0
542
+ TCGA-32-1970-01,1,59.0,1.0
543
+ TCGA-32-1973-01,1,21.0,1.0
544
+ TCGA-32-1976-01,1,65.0,1.0
545
+ TCGA-32-1977-01,1,63.0,0.0
546
+ TCGA-32-1978-01,1,57.0,1.0
547
+ TCGA-32-1979-01,1,69.0,0.0
548
+ TCGA-32-1980-01,1,72.0,1.0
549
+ TCGA-32-1982-01,1,76.0,0.0
550
+ TCGA-32-1986-01,1,68.0,1.0
551
+ TCGA-32-1987-01,1,49.0,0.0
552
+ TCGA-32-1991-01,1,60.0,1.0
553
+ TCGA-32-2491-01,1,63.0,1.0
554
+ TCGA-32-2494-01,1,58.0,0.0
555
+ TCGA-32-2495-01,1,59.0,0.0
556
+ TCGA-32-2498-01,1,,
557
+ TCGA-32-2615-01,1,62.0,1.0
558
+ TCGA-32-2616-01,1,48.0,0.0
559
+ TCGA-32-2632-01,1,80.0,1.0
560
+ TCGA-32-2634-01,1,82.0,1.0
561
+ TCGA-32-2638-01,1,67.0,1.0
562
+ TCGA-32-4208-01,1,25.0,1.0
563
+ TCGA-32-4209-01,1,40.0,1.0
564
+ TCGA-32-4210-01,1,73.0,1.0
565
+ TCGA-32-4211-01,1,56.0,1.0
566
+ TCGA-32-4213-01,1,47.0,0.0
567
+ TCGA-32-4719-01,1,73.0,1.0
568
+ TCGA-32-5222-01,1,66.0,1.0
569
+ TCGA-41-2571-01,1,89.0,1.0
570
+ TCGA-41-2572-01,1,67.0,1.0
571
+ TCGA-41-2573-01,1,59.0,1.0
572
+ TCGA-41-2575-01,1,75.0,1.0
573
+ TCGA-41-3392-01,1,88.0,1.0
574
+ TCGA-41-3393-01,1,81.0,0.0
575
+ TCGA-41-3915-01,1,48.0,1.0
576
+ TCGA-41-4097-01,1,63.0,0.0
577
+ TCGA-41-5651-01,1,59.0,0.0
578
+ TCGA-41-6646-01,1,73.0,0.0
579
+ TCGA-4W-AA9R-01,1,61.0,1.0
580
+ TCGA-4W-AA9S-01,1,69.0,1.0
581
+ TCGA-4W-AA9T-01,1,54.0,0.0
582
+ TCGA-74-6573-01,1,67.0,1.0
583
+ TCGA-74-6573-11,0,67.0,1.0
584
+ TCGA-74-6575-01,1,73.0,0.0
585
+ TCGA-74-6577-01,1,51.0,1.0
586
+ TCGA-74-6578-01,1,58.0,1.0
587
+ TCGA-74-6581-01,1,77.0,1.0
588
+ TCGA-74-6584-01,1,55.0,0.0
589
+ TCGA-76-4925-01,1,76.0,1.0
590
+ TCGA-76-4926-01,1,68.0,1.0
591
+ TCGA-76-4927-01,1,58.0,1.0
592
+ TCGA-76-4928-01,1,85.0,0.0
593
+ TCGA-76-4929-01,1,76.0,0.0
594
+ TCGA-76-4931-01,1,70.0,0.0
595
+ TCGA-76-4932-01,1,50.0,0.0
596
+ TCGA-76-4934-01,1,66.0,0.0
597
+ TCGA-76-4935-01,1,52.0,0.0
598
+ TCGA-76-6191-01,1,57.0,1.0
599
+ TCGA-76-6192-01,1,74.0,1.0
600
+ TCGA-76-6193-01,1,78.0,1.0
601
+ TCGA-76-6280-01,1,57.0,1.0
602
+ TCGA-76-6282-01,1,63.0,1.0
603
+ TCGA-76-6283-01,1,71.0,0.0
604
+ TCGA-76-6285-01,1,64.0,0.0
605
+ TCGA-76-6286-01,1,60.0,1.0
606
+ TCGA-76-6656-01,1,66.0,1.0
607
+ TCGA-76-6657-01,1,74.0,1.0
608
+ TCGA-76-6660-01,1,73.0,1.0
609
+ TCGA-76-6661-01,1,54.0,1.0
610
+ TCGA-76-6662-01,1,58.0,1.0
611
+ TCGA-76-6663-01,1,44.0,0.0
612
+ TCGA-76-6664-01,1,49.0,0.0
613
+ TCGA-81-5910-01,1,64.0,1.0
614
+ TCGA-81-5911-01,1,33.0,1.0
615
+ TCGA-87-5896-01,1,50.0,0.0
616
+ TCGA-CS-4938-01,1,31.0,0.0
617
+ TCGA-CS-4941-01,1,67.0,1.0
618
+ TCGA-CS-4942-01,1,44.0,0.0
619
+ TCGA-CS-4943-01,1,37.0,1.0
620
+ TCGA-CS-4944-01,1,50.0,1.0
621
+ TCGA-CS-5390-01,1,47.0,0.0
622
+ TCGA-CS-5393-01,1,39.0,1.0
623
+ TCGA-CS-5394-01,1,40.0,1.0
624
+ TCGA-CS-5395-01,1,43.0,1.0
625
+ TCGA-CS-5396-01,1,53.0,0.0
626
+ TCGA-CS-5397-01,1,54.0,0.0
627
+ TCGA-CS-6186-01,1,58.0,1.0
628
+ TCGA-CS-6188-01,1,48.0,1.0
629
+ TCGA-CS-6290-01,1,31.0,1.0
630
+ TCGA-CS-6665-01,1,51.0,0.0
631
+ TCGA-CS-6666-01,1,22.0,1.0
632
+ TCGA-CS-6667-01,1,39.0,0.0
633
+ TCGA-CS-6668-01,1,57.0,0.0
634
+ TCGA-CS-6669-01,1,26.0,0.0
635
+ TCGA-CS-6670-01,1,43.0,1.0
636
+ TCGA-DB-5270-01,1,38.0,0.0
637
+ TCGA-DB-5273-01,1,33.0,1.0
638
+ TCGA-DB-5274-01,1,37.0,0.0
639
+ TCGA-DB-5275-01,1,36.0,1.0
640
+ TCGA-DB-5276-01,1,32.0,1.0
641
+ TCGA-DB-5277-01,1,34.0,1.0
642
+ TCGA-DB-5278-01,1,17.0,1.0
643
+ TCGA-DB-5279-01,1,59.0,1.0
644
+ TCGA-DB-5280-01,1,43.0,1.0
645
+ TCGA-DB-5281-01,1,61.0,1.0
646
+ TCGA-DB-A4X9-01,1,33.0,0.0
647
+ TCGA-DB-A4XA-01,1,30.0,1.0
648
+ TCGA-DB-A4XB-01,1,38.0,1.0
649
+ TCGA-DB-A4XC-01,1,26.0,1.0
650
+ TCGA-DB-A4XD-01,1,32.0,1.0
651
+ TCGA-DB-A4XE-01,1,27.0,0.0
652
+ TCGA-DB-A4XF-01,1,41.0,0.0
653
+ TCGA-DB-A4XG-01,1,34.0,1.0
654
+ TCGA-DB-A4XH-01,1,53.0,0.0
655
+ TCGA-DB-A64L-01,1,67.0,0.0
656
+ TCGA-DB-A64O-01,1,59.0,1.0
657
+ TCGA-DB-A64P-01,1,40.0,1.0
658
+ TCGA-DB-A64Q-01,1,31.0,0.0
659
+ TCGA-DB-A64R-01,1,24.0,0.0
660
+ TCGA-DB-A64S-01,1,20.0,1.0
661
+ TCGA-DB-A64U-01,1,38.0,0.0
662
+ TCGA-DB-A64V-01,1,54.0,1.0
663
+ TCGA-DB-A64W-01,1,65.0,0.0
664
+ TCGA-DB-A64X-01,1,56.0,0.0
665
+ TCGA-DB-A75K-01,1,55.0,0.0
666
+ TCGA-DB-A75L-01,1,36.0,0.0
667
+ TCGA-DB-A75M-01,1,47.0,1.0
668
+ TCGA-DB-A75O-01,1,29.0,1.0
669
+ TCGA-DB-A75P-01,1,25.0,0.0
670
+ TCGA-DH-5140-01,1,38.0,0.0
671
+ TCGA-DH-5141-01,1,32.0,1.0
672
+ TCGA-DH-5142-01,1,29.0,1.0
673
+ TCGA-DH-5143-01,1,30.0,1.0
674
+ TCGA-DH-5144-01,1,56.0,0.0
675
+ TCGA-DH-A669-01,1,70.0,1.0
676
+ TCGA-DH-A669-02,1,70.0,1.0
677
+ TCGA-DH-A66B-01,1,52.0,1.0
678
+ TCGA-DH-A66D-01,1,43.0,0.0
679
+ TCGA-DH-A66F-01,1,49.0,1.0
680
+ TCGA-DH-A66G-01,1,49.0,0.0
681
+ TCGA-DH-A7UR-01,1,59.0,0.0
682
+ TCGA-DH-A7US-01,1,50.0,1.0
683
+ TCGA-DH-A7UT-01,1,30.0,1.0
684
+ TCGA-DH-A7UU-01,1,43.0,1.0
685
+ TCGA-DH-A7UV-01,1,49.0,1.0
686
+ TCGA-DU-5847-01,1,34.0,0.0
687
+ TCGA-DU-5849-01,1,48.0,1.0
688
+ TCGA-DU-5851-01,1,40.0,0.0
689
+ TCGA-DU-5852-01,1,61.0,0.0
690
+ TCGA-DU-5853-01,1,29.0,1.0
691
+ TCGA-DU-5854-01,1,57.0,0.0
692
+ TCGA-DU-5855-01,1,49.0,0.0
693
+ TCGA-DU-5870-01,1,34.0,0.0
694
+ TCGA-DU-5870-02,1,34.0,0.0
695
+ TCGA-DU-5871-01,1,37.0,0.0
696
+ TCGA-DU-5872-01,1,43.0,0.0
697
+ TCGA-DU-5872-02,1,43.0,0.0
698
+ TCGA-DU-5874-01,1,62.0,0.0
699
+ TCGA-DU-6392-01,1,35.0,0.0
700
+ TCGA-DU-6393-01,1,66.0,1.0
701
+ TCGA-DU-6394-01,1,53.0,1.0
702
+ TCGA-DU-6395-01,1,31.0,1.0
703
+ TCGA-DU-6396-01,1,31.0,0.0
704
+ TCGA-DU-6397-01,1,45.0,1.0
705
+ TCGA-DU-6397-02,1,45.0,1.0
706
+ TCGA-DU-6399-01,1,54.0,1.0
707
+ TCGA-DU-6400-01,1,66.0,0.0
708
+ TCGA-DU-6401-01,1,31.0,0.0
709
+ TCGA-DU-6402-01,1,52.0,1.0
710
+ TCGA-DU-6403-01,1,60.0,0.0
711
+ TCGA-DU-6404-01,1,24.0,0.0
712
+ TCGA-DU-6404-02,1,24.0,0.0
713
+ TCGA-DU-6405-01,1,51.0,0.0
714
+ TCGA-DU-6406-01,1,59.0,0.0
715
+ TCGA-DU-6407-01,1,35.0,0.0
716
+ TCGA-DU-6407-02,1,35.0,0.0
717
+ TCGA-DU-6408-01,1,23.0,0.0
718
+ TCGA-DU-6410-01,1,56.0,1.0
719
+ TCGA-DU-6542-01,1,25.0,1.0
720
+ TCGA-DU-7006-01,1,60.0,0.0
721
+ TCGA-DU-7007-01,1,33.0,1.0
722
+ TCGA-DU-7008-01,1,41.0,0.0
723
+ TCGA-DU-7009-01,1,32.0,0.0
724
+ TCGA-DU-7010-01,1,58.0,0.0
725
+ TCGA-DU-7011-01,1,25.0,1.0
726
+ TCGA-DU-7012-01,1,74.0,0.0
727
+ TCGA-DU-7013-01,1,59.0,1.0
728
+ TCGA-DU-7014-01,1,59.0,1.0
729
+ TCGA-DU-7015-01,1,41.0,0.0
730
+ TCGA-DU-7018-01,1,57.0,0.0
731
+ TCGA-DU-7019-01,1,39.0,1.0
732
+ TCGA-DU-7290-01,1,45.0,0.0
733
+ TCGA-DU-7292-01,1,69.0,1.0
734
+ TCGA-DU-7294-01,1,53.0,0.0
735
+ TCGA-DU-7298-01,1,38.0,0.0
736
+ TCGA-DU-7299-01,1,33.0,1.0
737
+ TCGA-DU-7300-01,1,53.0,0.0
738
+ TCGA-DU-7301-01,1,53.0,1.0
739
+ TCGA-DU-7302-01,1,48.0,0.0
740
+ TCGA-DU-7304-01,1,43.0,1.0
741
+ TCGA-DU-7304-02,1,43.0,1.0
742
+ TCGA-DU-7306-01,1,67.0,1.0
743
+ TCGA-DU-7309-01,1,41.0,0.0
744
+ TCGA-DU-8158-01,1,57.0,0.0
745
+ TCGA-DU-8161-01,1,63.0,0.0
746
+ TCGA-DU-8162-01,1,61.0,0.0
747
+ TCGA-DU-8163-01,1,29.0,1.0
748
+ TCGA-DU-8164-01,1,51.0,1.0
749
+ TCGA-DU-8165-01,1,60.0,0.0
750
+ TCGA-DU-8166-01,1,29.0,0.0
751
+ TCGA-DU-8167-01,1,69.0,0.0
752
+ TCGA-DU-8168-01,1,55.0,0.0
753
+ TCGA-DU-A5TP-01,1,33.0,1.0
754
+ TCGA-DU-A5TR-01,1,51.0,1.0
755
+ TCGA-DU-A5TS-01,1,42.0,1.0
756
+ TCGA-DU-A5TT-01,1,70.0,1.0
757
+ TCGA-DU-A5TU-01,1,62.0,0.0
758
+ TCGA-DU-A5TW-01,1,33.0,0.0
759
+ TCGA-DU-A5TY-01,1,46.0,0.0
760
+ TCGA-DU-A6S2-01,1,37.0,0.0
761
+ TCGA-DU-A6S3-01,1,60.0,1.0
762
+ TCGA-DU-A6S6-01,1,35.0,0.0
763
+ TCGA-DU-A6S7-01,1,27.0,0.0
764
+ TCGA-DU-A6S8-01,1,74.0,0.0
765
+ TCGA-DU-A76K-01,1,87.0,1.0
766
+ TCGA-DU-A76L-01,1,54.0,1.0
767
+ TCGA-DU-A76O-01,1,30.0,1.0
768
+ TCGA-DU-A76R-01,1,51.0,1.0
769
+ TCGA-DU-A7T6-01,1,73.0,0.0
770
+ TCGA-DU-A7T8-01,1,35.0,1.0
771
+ TCGA-DU-A7TA-01,1,32.0,1.0
772
+ TCGA-DU-A7TB-01,1,56.0,1.0
773
+ TCGA-DU-A7TC-01,1,32.0,1.0
774
+ TCGA-DU-A7TD-01,1,52.0,1.0
775
+ TCGA-DU-A7TG-01,1,40.0,1.0
776
+ TCGA-DU-A7TI-01,1,32.0,1.0
777
+ TCGA-DU-A7TJ-01,1,55.0,1.0
778
+ TCGA-E1-5302-01,1,41.0,1.0
779
+ TCGA-E1-5303-01,1,38.0,1.0
780
+ TCGA-E1-5304-01,1,42.0,1.0
781
+ TCGA-E1-5305-01,1,34.0,1.0
782
+ TCGA-E1-5307-01,1,62.0,0.0
783
+ TCGA-E1-5311-01,1,31.0,1.0
784
+ TCGA-E1-5318-01,1,42.0,0.0
785
+ TCGA-E1-5319-01,1,48.0,0.0
786
+ TCGA-E1-5322-01,1,38.0,0.0
787
+ TCGA-E1-A7YD-01,1,57.0,1.0
788
+ TCGA-E1-A7YE-01,1,32.0,0.0
789
+ TCGA-E1-A7YH-01,1,47.0,0.0
790
+ TCGA-E1-A7YI-01,1,33.0,0.0
791
+ TCGA-E1-A7YJ-01,1,55.0,1.0
792
+ TCGA-E1-A7YK-01,1,52.0,1.0
793
+ TCGA-E1-A7YL-01,1,46.0,1.0
794
+ TCGA-E1-A7YM-01,1,63.0,1.0
795
+ TCGA-E1-A7YN-01,1,63.0,0.0
796
+ TCGA-E1-A7YO-01,1,45.0,1.0
797
+ TCGA-E1-A7YQ-01,1,58.0,0.0
798
+ TCGA-E1-A7YS-01,1,71.0,1.0
799
+ TCGA-E1-A7YU-01,1,42.0,1.0
800
+ TCGA-E1-A7YV-01,1,26.0,0.0
801
+ TCGA-E1-A7YW-01,1,28.0,1.0
802
+ TCGA-E1-A7YY-01,1,27.0,0.0
803
+ TCGA-E1-A7Z2-01,1,58.0,0.0
804
+ TCGA-E1-A7Z3-01,1,31.0,0.0
805
+ TCGA-E1-A7Z4-01,1,35.0,1.0
806
+ TCGA-E1-A7Z6-01,1,41.0,0.0
807
+ TCGA-EZ-7264-01,1,47.0,0.0
808
+ TCGA-F6-A8O3-01,1,34.0,1.0
809
+ TCGA-F6-A8O4-01,1,44.0,1.0
810
+ TCGA-FG-5962-01,1,54.0,1.0
811
+ TCGA-FG-5963-01,1,23.0,1.0
812
+ TCGA-FG-5963-02,1,23.0,1.0
813
+ TCGA-FG-5964-01,1,62.0,1.0
814
+ TCGA-FG-5965-01,1,39.0,0.0
815
+ TCGA-FG-5965-02,1,39.0,0.0
816
+ TCGA-FG-6688-01,1,59.0,0.0
817
+ TCGA-FG-6689-01,1,30.0,1.0
818
+ TCGA-FG-6690-01,1,70.0,1.0
819
+ TCGA-FG-6691-01,1,23.0,0.0
820
+ TCGA-FG-6692-01,1,63.0,1.0
821
+ TCGA-FG-7634-01,1,28.0,1.0
822
+ TCGA-FG-7636-01,1,48.0,1.0
823
+ TCGA-FG-7637-01,1,49.0,1.0
824
+ TCGA-FG-7638-01,1,31.0,0.0
825
+ TCGA-FG-7641-01,1,31.0,1.0
826
+ TCGA-FG-7643-01,1,49.0,0.0
827
+ TCGA-FG-8181-01,1,23.0,1.0
828
+ TCGA-FG-8182-01,1,35.0,1.0
829
+ TCGA-FG-8185-01,1,37.0,1.0
830
+ TCGA-FG-8186-01,1,42.0,0.0
831
+ TCGA-FG-8187-01,1,31.0,1.0
832
+ TCGA-FG-8188-01,1,41.0,1.0
833
+ TCGA-FG-8189-01,1,33.0,0.0
834
+ TCGA-FG-8191-01,1,30.0,1.0
835
+ TCGA-FG-A4MT-01,1,27.0,0.0
836
+ TCGA-FG-A4MT-02,1,27.0,0.0
837
+ TCGA-FG-A4MU-01,1,58.0,1.0
838
+ TCGA-FG-A4MW-01,1,63.0,1.0
839
+ TCGA-FG-A4MX-01,1,47.0,1.0
840
+ TCGA-FG-A4MY-01,1,44.0,0.0
841
+ TCGA-FG-A60J-01,1,47.0,0.0
842
+ TCGA-FG-A60K-01,1,34.0,0.0
843
+ TCGA-FG-A60L-01,1,34.0,0.0
844
+ TCGA-FG-A6IZ-01,1,60.0,1.0
845
+ TCGA-FG-A6J1-01,1,44.0,0.0
846
+ TCGA-FG-A6J3-01,1,52.0,0.0
847
+ TCGA-FG-A70Y-01,1,20.0,0.0
848
+ TCGA-FG-A70Z-01,1,53.0,0.0
849
+ TCGA-FG-A710-01,1,50.0,0.0
850
+ TCGA-FG-A711-01,1,33.0,0.0
851
+ TCGA-FG-A713-01,1,74.0,0.0
852
+ TCGA-FG-A87N-01,1,37.0,0.0
853
+ TCGA-FG-A87Q-01,1,61.0,0.0
854
+ TCGA-FN-7833-01,1,25.0,1.0
855
+ TCGA-HT-7467-01,1,54.0,1.0
856
+ TCGA-HT-7468-01,1,30.0,1.0
857
+ TCGA-HT-7469-01,1,30.0,1.0
858
+ TCGA-HT-7470-01,1,37.0,1.0
859
+ TCGA-HT-7471-01,1,37.0,0.0
860
+ TCGA-HT-7472-01,1,38.0,1.0
861
+ TCGA-HT-7473-01,1,28.0,1.0
862
+ TCGA-HT-7474-01,1,52.0,1.0
863
+ TCGA-HT-7475-01,1,67.0,1.0
864
+ TCGA-HT-7476-01,1,26.0,1.0
865
+ TCGA-HT-7477-01,1,62.0,1.0
866
+ TCGA-HT-7478-01,1,36.0,1.0
867
+ TCGA-HT-7479-01,1,44.0,1.0
868
+ TCGA-HT-7480-01,1,33.0,1.0
869
+ TCGA-HT-7481-01,1,39.0,1.0
870
+ TCGA-HT-7482-01,1,18.0,0.0
871
+ TCGA-HT-7483-01,1,14.0,1.0
872
+ TCGA-HT-7485-01,1,42.0,1.0
873
+ TCGA-HT-7601-01,1,30.0,0.0
874
+ TCGA-HT-7602-01,1,21.0,1.0
875
+ TCGA-HT-7603-01,1,29.0,1.0
876
+ TCGA-HT-7604-01,1,50.0,1.0
877
+ TCGA-HT-7605-01,1,38.0,1.0
878
+ TCGA-HT-7606-01,1,30.0,0.0
879
+ TCGA-HT-7607-01,1,61.0,0.0
880
+ TCGA-HT-7608-01,1,61.0,1.0
881
+ TCGA-HT-7609-01,1,34.0,1.0
882
+ TCGA-HT-7610-01,1,25.0,0.0
883
+ TCGA-HT-7611-01,1,36.0,1.0
884
+ TCGA-HT-7616-01,1,75.0,1.0
885
+ TCGA-HT-7620-01,1,40.0,1.0
886
+ TCGA-HT-7676-01,1,26.0,1.0
887
+ TCGA-HT-7677-01,1,53.0,1.0
888
+ TCGA-HT-7680-01,1,32.0,0.0
889
+ TCGA-HT-7681-01,1,29.0,0.0
890
+ TCGA-HT-7684-01,1,58.0,1.0
891
+ TCGA-HT-7686-01,1,29.0,0.0
892
+ TCGA-HT-7687-01,1,74.0,1.0
893
+ TCGA-HT-7688-01,1,59.0,1.0
894
+ TCGA-HT-7689-01,1,58.0,0.0
895
+ TCGA-HT-7690-01,1,29.0,1.0
896
+ TCGA-HT-7691-01,1,31.0,0.0
897
+ TCGA-HT-7692-01,1,43.0,1.0
898
+ TCGA-HT-7693-01,1,51.0,0.0
899
+ TCGA-HT-7694-01,1,60.0,1.0
900
+ TCGA-HT-7695-01,1,29.0,0.0
901
+ TCGA-HT-7854-01,1,62.0,1.0
902
+ TCGA-HT-7855-01,1,39.0,1.0
903
+ TCGA-HT-7856-01,1,35.0,1.0
904
+ TCGA-HT-7857-01,1,24.0,0.0
905
+ TCGA-HT-7858-01,1,28.0,1.0
906
+ TCGA-HT-7860-01,1,60.0,0.0
907
+ TCGA-HT-7873-01,1,29.0,1.0
908
+ TCGA-HT-7874-01,1,41.0,0.0
909
+ TCGA-HT-7875-01,1,56.0,1.0
910
+ TCGA-HT-7877-01,1,20.0,0.0
911
+ TCGA-HT-7879-01,1,31.0,1.0
912
+ TCGA-HT-7880-01,1,30.0,1.0
913
+ TCGA-HT-7881-01,1,38.0,1.0
914
+ TCGA-HT-7882-01,1,66.0,1.0
915
+ TCGA-HT-7884-01,1,44.0,0.0
916
+ TCGA-HT-7902-01,1,30.0,0.0
917
+ TCGA-HT-8010-01,1,64.0,0.0
918
+ TCGA-HT-8011-01,1,55.0,1.0
919
+ TCGA-HT-8012-01,1,30.0,0.0
920
+ TCGA-HT-8013-01,1,37.0,0.0
921
+ TCGA-HT-8015-01,1,21.0,1.0
922
+ TCGA-HT-8018-01,1,40.0,0.0
923
+ TCGA-HT-8019-01,1,34.0,0.0
924
+ TCGA-HT-8104-01,1,51.0,0.0
925
+ TCGA-HT-8105-01,1,54.0,1.0
926
+ TCGA-HT-8106-01,1,53.0,1.0
927
+ TCGA-HT-8107-01,1,62.0,1.0
928
+ TCGA-HT-8108-01,1,26.0,0.0
929
+ TCGA-HT-8109-01,1,64.0,1.0
930
+ TCGA-HT-8110-01,1,57.0,1.0
931
+ TCGA-HT-8111-01,1,32.0,1.0
932
+ TCGA-HT-8113-01,1,49.0,0.0
933
+ TCGA-HT-8114-01,1,36.0,1.0
934
+ TCGA-HT-8558-01,1,29.0,0.0
935
+ TCGA-HT-8563-01,1,30.0,0.0
936
+ TCGA-HT-8564-01,1,47.0,1.0
937
+ TCGA-HT-A4DS-01,1,55.0,0.0
938
+ TCGA-HT-A4DV-01,1,51.0,0.0
939
+ TCGA-HT-A5R5-01,1,33.0,0.0
940
+ TCGA-HT-A5R7-01,1,33.0,0.0
941
+ TCGA-HT-A5R9-01,1,48.0,0.0
942
+ TCGA-HT-A5RA-01,1,65.0,0.0
943
+ TCGA-HT-A5RB-01,1,24.0,1.0
944
+ TCGA-HT-A5RC-01,1,70.0,0.0
945
+ TCGA-HT-A614-01,1,47.0,1.0
946
+ TCGA-HT-A615-01,1,38.0,0.0
947
+ TCGA-HT-A616-01,1,36.0,0.0
948
+ TCGA-HT-A617-01,1,47.0,1.0
949
+ TCGA-HT-A618-01,1,37.0,0.0
950
+ TCGA-HT-A619-01,1,51.0,0.0
951
+ TCGA-HT-A61A-01,1,20.0,0.0
952
+ TCGA-HT-A61B-01,1,22.0,1.0
953
+ TCGA-HT-A61C-01,1,66.0,1.0
954
+ TCGA-HT-A74H-01,1,62.0,1.0
955
+ TCGA-HT-A74J-01,1,33.0,1.0
956
+ TCGA-HT-A74K-01,1,58.0,0.0
957
+ TCGA-HT-A74L-01,1,22.0,0.0
958
+ TCGA-HT-A74O-01,1,34.0,1.0
959
+ TCGA-HW-7486-01,1,37.0,1.0
960
+ TCGA-HW-7487-01,1,39.0,1.0
961
+ TCGA-HW-7489-01,1,38.0,1.0
962
+ TCGA-HW-7490-01,1,41.0,1.0
963
+ TCGA-HW-7491-01,1,35.0,1.0
964
+ TCGA-HW-7493-01,1,40.0,0.0
965
+ TCGA-HW-7495-01,1,45.0,0.0
966
+ TCGA-HW-8319-01,1,34.0,0.0
967
+ TCGA-HW-8320-01,1,36.0,1.0
968
+ TCGA-HW-8321-01,1,31.0,1.0
969
+ TCGA-HW-8322-01,1,39.0,1.0
970
+ TCGA-HW-A5KJ-01,1,68.0,1.0
971
+ TCGA-HW-A5KK-01,1,64.0,1.0
972
+ TCGA-HW-A5KL-01,1,42.0,0.0
973
+ TCGA-HW-A5KM-01,1,35.0,1.0
974
+ TCGA-IK-7675-01,1,43.0,1.0
975
+ TCGA-IK-8125-01,1,62.0,1.0
976
+ TCGA-KT-A74X-01,1,26.0,1.0
977
+ TCGA-KT-A7W1-01,1,45.0,0.0
978
+ TCGA-OX-A56R-01,1,68.0,1.0
979
+ TCGA-P5-A5ET-01,1,27.0,1.0
980
+ TCGA-P5-A5EU-01,1,35.0,1.0
981
+ TCGA-P5-A5EV-01,1,39.0,1.0
982
+ TCGA-P5-A5EW-01,1,20.0,0.0
983
+ TCGA-P5-A5EX-01,1,41.0,0.0
984
+ TCGA-P5-A5EY-01,1,21.0,1.0
985
+ TCGA-P5-A5EZ-01,1,39.0,1.0
986
+ TCGA-P5-A5F0-01,1,33.0,1.0
987
+ TCGA-P5-A5F1-01,1,30.0,1.0
988
+ TCGA-P5-A5F2-01,1,36.0,0.0
989
+ TCGA-P5-A5F4-01,1,35.0,0.0
990
+ TCGA-P5-A5F6-01,1,26.0,1.0
991
+ TCGA-P5-A72U-01,1,71.0,0.0
992
+ TCGA-P5-A72W-01,1,35.0,1.0
993
+ TCGA-P5-A72X-01,1,21.0,1.0
994
+ TCGA-P5-A72Z-01,1,64.0,0.0
995
+ TCGA-P5-A730-01,1,22.0,1.0
996
+ TCGA-P5-A731-01,1,59.0,0.0
997
+ TCGA-P5-A733-01,1,52.0,0.0
998
+ TCGA-P5-A735-01,1,38.0,0.0
999
+ TCGA-P5-A736-01,1,44.0,0.0
1000
+ TCGA-P5-A737-01,1,47.0,1.0
1001
+ TCGA-P5-A77W-01,1,37.0,0.0
1002
+ TCGA-P5-A77X-01,1,55.0,0.0
1003
+ TCGA-P5-A780-01,1,44.0,0.0
1004
+ TCGA-P5-A781-01,1,34.0,0.0
1005
+ TCGA-QH-A65R-01,1,38.0,0.0
1006
+ TCGA-QH-A65S-01,1,32.0,0.0
1007
+ TCGA-QH-A65V-01,1,43.0,0.0
1008
+ TCGA-QH-A65X-01,1,28.0,0.0
1009
+ TCGA-QH-A65Z-01,1,54.0,1.0
1010
+ TCGA-QH-A6CS-01,1,41.0,1.0
1011
+ TCGA-QH-A6CU-01,1,52.0,0.0
1012
+ TCGA-QH-A6CV-01,1,51.0,1.0
1013
+ TCGA-QH-A6CW-01,1,43.0,1.0
1014
+ TCGA-QH-A6CX-01,1,66.0,1.0
1015
+ TCGA-QH-A6CY-01,1,38.0,1.0
1016
+ TCGA-QH-A6CZ-01,1,38.0,1.0
1017
+ TCGA-QH-A6X3-01,1,27.0,1.0
1018
+ TCGA-QH-A6X4-01,1,47.0,1.0
1019
+ TCGA-QH-A6X5-01,1,58.0,0.0
1020
+ TCGA-QH-A6X8-01,1,56.0,0.0
1021
+ TCGA-QH-A6X9-01,1,73.0,0.0
1022
+ TCGA-QH-A6XA-01,1,23.0,0.0
1023
+ TCGA-QH-A6XC-01,1,48.0,1.0
1024
+ TCGA-QH-A86X-01,1,33.0,1.0
1025
+ TCGA-QH-A870-01,1,38.0,0.0
1026
+ TCGA-R8-A6MK-01,1,40.0,1.0
1027
+ TCGA-R8-A6ML-01,1,52.0,1.0
1028
+ TCGA-R8-A6MO-01,1,53.0,0.0
1029
+ TCGA-R8-A6YH-01,1,,
1030
+ TCGA-R8-A73M-01,1,48.0,0.0
1031
+ TCGA-RR-A6KA-01,1,72.0,0.0
1032
+ TCGA-RR-A6KB-01,1,51.0,1.0
1033
+ TCGA-RR-A6KC-01,1,55.0,1.0
1034
+ TCGA-RY-A83X-01,1,46.0,0.0
1035
+ TCGA-RY-A83Y-01,1,45.0,1.0
1036
+ TCGA-RY-A83Z-01,1,54.0,0.0
1037
+ TCGA-RY-A840-01,1,47.0,1.0
1038
+ TCGA-RY-A843-01,1,30.0,1.0
1039
+ TCGA-RY-A845-01,1,40.0,0.0
1040
+ TCGA-RY-A847-01,1,45.0,1.0
1041
+ TCGA-S9-A6TS-01,1,48.0,0.0
1042
+ TCGA-S9-A6TU-01,1,38.0,1.0
1043
+ TCGA-S9-A6TV-01,1,50.0,1.0
1044
+ TCGA-S9-A6TW-01,1,40.0,1.0
1045
+ TCGA-S9-A6TX-01,1,46.0,1.0
1046
+ TCGA-S9-A6TY-01,1,50.0,1.0
1047
+ TCGA-S9-A6TZ-01,1,39.0,0.0
1048
+ TCGA-S9-A6U0-01,1,46.0,1.0
1049
+ TCGA-S9-A6U1-01,1,22.0,0.0
1050
+ TCGA-S9-A6U2-01,1,48.0,0.0
1051
+ TCGA-S9-A6U5-01,1,33.0,1.0
1052
+ TCGA-S9-A6U6-01,1,28.0,1.0
1053
+ TCGA-S9-A6U8-01,1,24.0,1.0
1054
+ TCGA-S9-A6U9-01,1,36.0,1.0
1055
+ TCGA-S9-A6UA-01,1,66.0,1.0
1056
+ TCGA-S9-A6UB-01,1,52.0,1.0
1057
+ TCGA-S9-A6WD-01,1,58.0,1.0
1058
+ TCGA-S9-A6WE-01,1,34.0,1.0
1059
+ TCGA-S9-A6WG-01,1,31.0,1.0
1060
+ TCGA-S9-A6WH-01,1,73.0,0.0
1061
+ TCGA-S9-A6WI-01,1,56.0,0.0
1062
+ TCGA-S9-A6WL-01,1,52.0,1.0
1063
+ TCGA-S9-A6WM-01,1,59.0,0.0
1064
+ TCGA-S9-A6WN-01,1,38.0,0.0
1065
+ TCGA-S9-A6WO-01,1,29.0,1.0
1066
+ TCGA-S9-A6WP-01,1,42.0,1.0
1067
+ TCGA-S9-A6WQ-01,1,57.0,0.0
1068
+ TCGA-S9-A7IQ-01,1,45.0,0.0
1069
+ TCGA-S9-A7IS-01,1,33.0,0.0
1070
+ TCGA-S9-A7IX-01,1,57.0,1.0
1071
+ TCGA-S9-A7IY-01,1,39.0,1.0
1072
+ TCGA-S9-A7IZ-01,1,48.0,0.0
1073
+ TCGA-S9-A7J0-01,1,30.0,0.0
1074
+ TCGA-S9-A7J1-01,1,43.0,1.0
1075
+ TCGA-S9-A7J2-01,1,25.0,1.0
1076
+ TCGA-S9-A7J3-01,1,52.0,0.0
1077
+ TCGA-S9-A7QW-01,1,54.0,0.0
1078
+ TCGA-S9-A7QX-01,1,36.0,0.0
1079
+ TCGA-S9-A7QY-01,1,35.0,0.0
1080
+ TCGA-S9-A7QZ-01,1,41.0,1.0
1081
+ TCGA-S9-A7R1-01,1,35.0,1.0
1082
+ TCGA-S9-A7R2-01,1,69.0,1.0
1083
+ TCGA-S9-A7R3-01,1,28.0,0.0
1084
+ TCGA-S9-A7R4-01,1,46.0,1.0
1085
+ TCGA-S9-A7R7-01,1,27.0,1.0
1086
+ TCGA-S9-A7R8-01,1,44.0,0.0
1087
+ TCGA-S9-A89V-01,1,70.0,1.0
1088
+ TCGA-S9-A89Z-01,1,40.0,1.0
1089
+ TCGA-TM-A7C3-01,1,43.0,0.0
1090
+ TCGA-TM-A7C4-01,1,39.0,0.0
1091
+ TCGA-TM-A7C5-01,1,30.0,1.0
1092
+ TCGA-TM-A7CA-01,1,44.0,1.0
1093
+ TCGA-TM-A7CF-01,1,41.0,0.0
1094
+ TCGA-TM-A7CF-02,1,41.0,0.0
1095
+ TCGA-TM-A84B-01,1,40.0,1.0
1096
+ TCGA-TM-A84C-01,1,32.0,1.0
1097
+ TCGA-TM-A84F-01,1,48.0,1.0
1098
+ TCGA-TM-A84G-01,1,54.0,0.0
1099
+ TCGA-TM-A84H-01,1,44.0,0.0
1100
+ TCGA-TM-A84I-01,1,30.0,1.0
1101
+ TCGA-TM-A84J-01,1,63.0,1.0
1102
+ TCGA-TM-A84L-01,1,31.0,1.0
1103
+ TCGA-TM-A84M-01,1,40.0,1.0
1104
+ TCGA-TM-A84O-01,1,61.0,0.0
1105
+ TCGA-TM-A84Q-01,1,31.0,1.0
1106
+ TCGA-TM-A84R-01,1,46.0,1.0
1107
+ TCGA-TM-A84S-01,1,36.0,1.0
1108
+ TCGA-TM-A84T-01,1,19.0,1.0
1109
+ TCGA-TQ-A7RF-01,1,27.0,0.0
1110
+ TCGA-TQ-A7RG-01,1,36.0,1.0
1111
+ TCGA-TQ-A7RH-01,1,39.0,1.0
1112
+ TCGA-TQ-A7RI-01,1,37.0,0.0
1113
+ TCGA-TQ-A7RJ-01,1,25.0,0.0
1114
+ TCGA-TQ-A7RK-01,1,29.0,1.0
1115
+ TCGA-TQ-A7RK-02,1,29.0,1.0
1116
+ TCGA-TQ-A7RM-01,1,41.0,0.0
1117
+ TCGA-TQ-A7RN-01,1,32.0,1.0
1118
+ TCGA-TQ-A7RO-01,1,29.0,1.0
1119
+ TCGA-TQ-A7RP-01,1,66.0,1.0
1120
+ TCGA-TQ-A7RQ-01,1,38.0,0.0
1121
+ TCGA-TQ-A7RR-01,1,38.0,1.0
1122
+ TCGA-TQ-A7RS-01,1,25.0,0.0
1123
+ TCGA-TQ-A7RU-01,1,51.0,1.0
1124
+ TCGA-TQ-A7RV-01,1,27.0,1.0
1125
+ TCGA-TQ-A7RV-02,1,27.0,1.0
1126
+ TCGA-TQ-A7RW-01,1,32.0,1.0
1127
+ TCGA-TQ-A8XE-01,1,42.0,0.0
1128
+ TCGA-TQ-A8XE-02,1,42.0,0.0
1129
+ TCGA-VM-A8C8-01,1,50.0,0.0
1130
+ TCGA-VM-A8C9-01,1,37.0,0.0
1131
+ TCGA-VM-A8CA-01,1,54.0,1.0
1132
+ TCGA-VM-A8CB-01,1,33.0,1.0
1133
+ TCGA-VM-A8CD-01,1,58.0,1.0
1134
+ TCGA-VM-A8CE-01,1,25.0,1.0
1135
+ TCGA-VM-A8CF-01,1,44.0,0.0
1136
+ TCGA-VM-A8CH-01,1,24.0,0.0
1137
+ TCGA-VV-A829-01,1,44.0,1.0
1138
+ TCGA-VV-A86M-01,1,36.0,0.0
1139
+ TCGA-VW-A7QS-01,1,35.0,0.0
1140
+ TCGA-VW-A8FI-01,1,66.0,1.0
1141
+ TCGA-W9-A837-01,1,47.0,1.0
1142
+ TCGA-WH-A86K-01,1,65.0,1.0
1143
+ TCGA-WY-A858-01,1,32.0,0.0
1144
+ TCGA-WY-A859-01,1,34.0,0.0
1145
+ TCGA-WY-A85A-01,1,20.0,1.0
1146
+ TCGA-WY-A85B-01,1,24.0,1.0
1147
+ TCGA-WY-A85C-01,1,36.0,1.0
1148
+ TCGA-WY-A85D-01,1,60.0,1.0
1149
+ TCGA-WY-A85E-01,1,48.0,0.0
p3/preprocess/Alzheimers_Disease/code/GSE109887.py ADDED
@@ -0,0 +1,180 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE109887"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE109887"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE109887.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE109887.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE109887.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Yes, it contains gene expression data based on Series_overall_design mentioning "Illumina HumanHT-12 v4 BeadChip"
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # 2.1 Data Availability
42
+
43
+ # Trait (AD status) is available in Feature 3
44
+ trait_row = 3
45
+
46
+ # Age is available in Feature 1
47
+ age_row = 1
48
+
49
+ # Gender is available in Feature 0
50
+ gender_row = 0
51
+
52
+ # 2.2 Data Type Conversion Functions
53
+
54
+ def convert_trait(value: str) -> Optional[int]:
55
+ """Convert AD/Control status to binary"""
56
+ if not value or ':' not in value:
57
+ return None
58
+ value = value.split(':')[1].strip().lower()
59
+ if 'ad' in value:
60
+ return 1
61
+ elif 'control' in value:
62
+ return 0
63
+ return None
64
+
65
+ def convert_age(value: str) -> Optional[float]:
66
+ """Convert age to continuous numeric"""
67
+ if not value or ':' not in value:
68
+ return None
69
+ try:
70
+ return float(value.split(':')[1].strip())
71
+ except:
72
+ return None
73
+
74
+ def convert_gender(value: str) -> Optional[int]:
75
+ """Convert gender to binary (0=female, 1=male)"""
76
+ if not value or ':' not in value:
77
+ return None
78
+ value = value.split(':')[1].strip().lower()
79
+ if 'female' in value:
80
+ return 0
81
+ elif 'male' in value:
82
+ return 1
83
+ return None
84
+
85
+ # 3. Save Metadata
86
+ is_trait_available = trait_row is not None
87
+ validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
88
+ is_gene_available=is_gene_available,
89
+ is_trait_available=is_trait_available)
90
+
91
+ # 4. Clinical Feature Extraction
92
+ if trait_row is not None:
93
+ selected_clinical = geo_select_clinical_features(
94
+ clinical_df=clinical_data,
95
+ trait=trait,
96
+ trait_row=trait_row,
97
+ convert_trait=convert_trait,
98
+ age_row=age_row,
99
+ convert_age=convert_age,
100
+ gender_row=gender_row,
101
+ convert_gender=convert_gender
102
+ )
103
+
104
+ print("Preview of selected clinical features:")
105
+ print(preview_df(selected_clinical))
106
+
107
+ # Save clinical features
108
+ selected_clinical.to_csv(out_clinical_data_file)
109
+ # Extract gene expression data from matrix file
110
+ gene_data = get_genetic_data(matrix_file)
111
+
112
+ # Print first 20 row IDs and shape of data to help debug
113
+ print("Shape of gene expression data:", gene_data.shape)
114
+ print("\nFirst few rows of data:")
115
+ print(gene_data.head())
116
+ print("\nFirst 20 gene/probe identifiers:")
117
+ print(gene_data.index[:20])
118
+
119
+ # Inspect a snippet of raw file to verify identifier format
120
+ import gzip
121
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
122
+ lines = []
123
+ for i, line in enumerate(f):
124
+ if "!series_matrix_table_begin" in line:
125
+ # Get the next 5 lines after the marker
126
+ for _ in range(5):
127
+ lines.append(next(f).strip())
128
+ break
129
+ print("\nFirst few lines after matrix marker in raw file:")
130
+ for line in lines:
131
+ print(line)
132
+ # Looking at the gene identifiers like 'A1BG', 'A1CF', 'A2M', 'AACS' etc,
133
+ # these appear to be standard human gene symbols
134
+ # No mapping needed
135
+ requires_gene_mapping = False
136
+ # 1. Normalize gene symbols
137
+ gene_data = normalize_gene_symbols_in_index(gene_data)
138
+
139
+ # Save normalized gene data
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ try:
144
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
145
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
146
+
147
+ # 3. Handle missing values
148
+ linked_data = handle_missing_values(linked_data, trait)
149
+
150
+ # 4. Determine if features are biased
151
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
152
+
153
+ # 5. Validate and save cohort info
154
+ is_usable = validate_and_save_cohort_info(
155
+ is_final=True,
156
+ cohort=cohort,
157
+ info_path=json_path,
158
+ is_gene_available=True,
159
+ is_trait_available=True,
160
+ is_biased=is_trait_biased,
161
+ df=linked_data,
162
+ note="Gene expression data successfully mapped and linked with clinical features"
163
+ )
164
+
165
+ # 6. Save linked data only if usable AND trait is not biased
166
+ if is_usable and not is_trait_biased:
167
+ linked_data.to_csv(out_data_file)
168
+
169
+ except Exception as e:
170
+ print(f"Error in data linking and processing: {str(e)}")
171
+ is_usable = validate_and_save_cohort_info(
172
+ is_final=True,
173
+ cohort=cohort,
174
+ info_path=json_path,
175
+ is_gene_available=True,
176
+ is_trait_available=True,
177
+ is_biased=True,
178
+ df=pd.DataFrame(),
179
+ note=f"Data processing failed: {str(e)}"
180
+ )
p3/preprocess/Alzheimers_Disease/code/GSE117589.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE117589"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE117589"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE117589.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE117589.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE117589.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # From series title and summary, this appears to be gene expression data from iPSC models
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability
41
+ # Feature 2 contains diagnosis information - trait data
42
+ trait_row = 2
43
+
44
+ # Feature 1 contains subject info with age and gender
45
+ age_row = 1
46
+ gender_row = 1
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(value: str) -> int:
50
+ """Convert diagnosis to binary where AD=1, normal=0"""
51
+ if not value or ':' not in value:
52
+ return None
53
+ value = value.split(':')[1].strip().lower()
54
+ if "alzheimer" in value:
55
+ return 1
56
+ elif "normal" in value:
57
+ return 0
58
+ return None
59
+
60
+ def convert_age(value: str) -> float:
61
+ """Extract age from subject info"""
62
+ if not value or ':' not in value:
63
+ return None
64
+ value = value.split(':')[1].strip()
65
+ # Extract number from strings like "60F", "72M"
66
+ try:
67
+ age = float(value[:-1]) # Remove last character (F/M) and convert to float
68
+ return age
69
+ except:
70
+ return None
71
+
72
+ def convert_gender(value: str) -> int:
73
+ """Convert gender to binary where male=1, female=0"""
74
+ if not value or ':' not in value:
75
+ return None
76
+ value = value.split(':')[1].strip()
77
+ # Extract gender from strings like "60F", "72M"
78
+ if value.endswith('F'):
79
+ return 0
80
+ elif value.endswith('M'):
81
+ return 1
82
+ return None
83
+
84
+ # 3. Save metadata
85
+ validate_and_save_cohort_info(
86
+ is_final=False,
87
+ cohort=cohort,
88
+ info_path=json_path,
89
+ is_gene_available=is_gene_available,
90
+ is_trait_available=(trait_row is not None)
91
+ )
92
+
93
+ # 4. Extract clinical features
94
+ clinical_df = geo_select_clinical_features(
95
+ clinical_df=clinical_data,
96
+ trait=trait,
97
+ trait_row=trait_row,
98
+ convert_trait=convert_trait,
99
+ age_row=age_row,
100
+ convert_age=convert_age,
101
+ gender_row=gender_row,
102
+ convert_gender=convert_gender
103
+ )
104
+
105
+ # Preview the clinical data
106
+ preview_result = preview_df(clinical_df)
107
+ print("Clinical data preview:", preview_result)
108
+
109
+ # Save clinical data
110
+ clinical_df.to_csv(out_clinical_data_file)
111
+ # Extract gene expression data from matrix file
112
+ gene_data = get_genetic_data(matrix_file)
113
+
114
+ # Print first 20 row IDs and shape of data to help debug
115
+ print("Shape of gene expression data:", gene_data.shape)
116
+ print("\nFirst few rows of data:")
117
+ print(gene_data.head())
118
+ print("\nFirst 20 gene/probe identifiers:")
119
+ print(gene_data.index[:20])
120
+
121
+ # Inspect a snippet of raw file to verify identifier format
122
+ import gzip
123
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
124
+ lines = []
125
+ for i, line in enumerate(f):
126
+ if "!series_matrix_table_begin" in line:
127
+ # Get the next 5 lines after the marker
128
+ for _ in range(5):
129
+ lines.append(next(f).strip())
130
+ break
131
+ print("\nFirst few lines after matrix marker in raw file:")
132
+ for line in lines:
133
+ print(line)
134
+ # These are ENSEMBL gene identifiers with "_at" suffix, not standard human gene symbols
135
+ # They need to be mapped to human gene symbols for better interpretability
136
+ requires_gene_mapping = True
137
+ # Extract gene annotation from SOFT file and get meaningful data
138
+ gene_annotation = get_gene_annotation(soft_file)
139
+
140
+ # Function to extract gene symbols from description field
141
+ def extract_gene_from_description(desc):
142
+ if pd.isna(desc):
143
+ return None
144
+ # Extract text before [Source:HGNC Symbol;Acc:...]
145
+ match = re.match(r'^(.*?)\s+\[Source:', desc)
146
+ if match:
147
+ return match.group(1)
148
+ return None
149
+
150
+ # Preview gene annotation data
151
+ print("Gene annotation shape:", gene_annotation.shape)
152
+ print("\nGene annotation preview:")
153
+ print(preview_df(gene_annotation))
154
+
155
+ print("\nNumber of non-null values in each column:")
156
+ print(gene_annotation.count())
157
+
158
+ # Extract gene symbols and add as new column
159
+ gene_annotation['GENE_SYMBOL'] = gene_annotation['Description'].apply(extract_gene_from_description)
160
+
161
+ print("\nSample mapping information:")
162
+ print("First few rows showing ID to Gene Symbol mapping:")
163
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head(10).to_string())
164
+
165
+ print("\nNote: Gene mapping will use:")
166
+ print("'ID' column: Probe identifiers")
167
+ print("'GENE_SYMBOL' column: Extracted gene names from Description")
168
+ # Create mapping dataframe between probe IDs and gene symbols
169
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
170
+
171
+ # Apply gene mapping to convert probe-level data to gene expression data
172
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
173
+
174
+ # Preview results
175
+ print("Shape of mapped gene expression data:", gene_data.shape)
176
+ print("\nFirst few rows of mapped data:")
177
+ print(gene_data.head())
178
+ # 1. Normalize gene symbols
179
+ gene_data = normalize_gene_symbols_in_index(gene_data)
180
+
181
+ # Save normalized gene data
182
+ gene_data.to_csv(out_gene_data_file)
183
+
184
+ # 2. Link clinical and genetic data
185
+ try:
186
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
187
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
188
+
189
+ # 3. Handle missing values
190
+ linked_data = handle_missing_values(linked_data, trait)
191
+
192
+ # 4. Determine if features are biased
193
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
194
+
195
+ # 5. Validate and save cohort info
196
+ is_usable = validate_and_save_cohort_info(
197
+ is_final=True,
198
+ cohort=cohort,
199
+ info_path=json_path,
200
+ is_gene_available=True,
201
+ is_trait_available=True,
202
+ is_biased=is_trait_biased,
203
+ df=linked_data,
204
+ note="Gene expression data successfully mapped and linked with clinical features"
205
+ )
206
+
207
+ # 6. Save linked data only if usable AND trait is not biased
208
+ if is_usable and not is_trait_biased:
209
+ linked_data.to_csv(out_data_file)
210
+
211
+ except Exception as e:
212
+ print(f"Error in data linking and processing: {str(e)}")
213
+ is_usable = validate_and_save_cohort_info(
214
+ is_final=True,
215
+ cohort=cohort,
216
+ info_path=json_path,
217
+ is_gene_available=True,
218
+ is_trait_available=True,
219
+ is_biased=True,
220
+ df=pd.DataFrame(),
221
+ note=f"Data processing failed: {str(e)}"
222
+ )
p3/preprocess/Alzheimers_Disease/code/GSE122063.py ADDED
@@ -0,0 +1,206 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE122063"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE122063"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE122063.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE122063.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE122063.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on the series title and design, this is a microarray gene expression study
38
+ is_gene_available = True
39
+
40
+ # 2.1 Data Availability & 2.2 Data Type Conversion
41
+ # Trait data is in Feature 0 and has multiple values
42
+ trait_row = 0
43
+
44
+ def convert_trait(value):
45
+ if not value or ':' not in value:
46
+ return None
47
+ diagnosis = value.split(': ')[1].lower()
48
+ if "alzheimer" in diagnosis:
49
+ return 1
50
+ elif "control" in diagnosis:
51
+ return 0
52
+ return None
53
+
54
+ # Age data is in Feature 6
55
+ age_row = 6
56
+
57
+ def convert_age(value):
58
+ if not value or ':' not in value:
59
+ return None
60
+ try:
61
+ return float(value.split(': ')[1])
62
+ except:
63
+ return None
64
+
65
+ # Gender data is in Feature 5
66
+ gender_row = 5
67
+
68
+ def convert_gender(value):
69
+ if not value or ':' not in value:
70
+ return None
71
+ gender = value.split(': ')[1].lower()
72
+ if gender == 'female':
73
+ return 0
74
+ elif gender == 'male':
75
+ return 1
76
+ return None
77
+
78
+ # 3. Save Metadata
79
+ validate_and_save_cohort_info(
80
+ is_final=False,
81
+ cohort=cohort,
82
+ info_path=json_path,
83
+ is_gene_available=is_gene_available,
84
+ is_trait_available=(trait_row is not None)
85
+ )
86
+
87
+ # 4. Clinical Feature Extraction
88
+ clinical_features = geo_select_clinical_features(
89
+ clinical_df=clinical_data,
90
+ trait=trait,
91
+ trait_row=trait_row,
92
+ convert_trait=convert_trait,
93
+ age_row=age_row,
94
+ convert_age=convert_age,
95
+ gender_row=gender_row,
96
+ convert_gender=convert_gender
97
+ )
98
+
99
+ # Preview the clinical features
100
+ preview_result = preview_df(clinical_features)
101
+ print("Preview of clinical features:", preview_result)
102
+
103
+ # Save clinical features
104
+ clinical_features.to_csv(out_clinical_data_file)
105
+ # Extract gene expression data from matrix file
106
+ gene_data = get_genetic_data(matrix_file)
107
+
108
+ # Print first 20 row IDs and shape of data to help debug
109
+ print("Shape of gene expression data:", gene_data.shape)
110
+ print("\nFirst few rows of data:")
111
+ print(gene_data.head())
112
+ print("\nFirst 20 gene/probe identifiers:")
113
+ print(gene_data.index[:20])
114
+
115
+ # Inspect a snippet of raw file to verify identifier format
116
+ import gzip
117
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
118
+ lines = []
119
+ for i, line in enumerate(f):
120
+ if "!series_matrix_table_begin" in line:
121
+ # Get the next 5 lines after the marker
122
+ for _ in range(5):
123
+ lines.append(next(f).strip())
124
+ break
125
+ print("\nFirst few lines after matrix marker in raw file:")
126
+ for line in lines:
127
+ print(line)
128
+ # Based on the data shown, the gene identifiers are not human gene symbols
129
+ # They appear to be simple numeric IDs (4, 5, 6, 7, etc.) which need mapping to gene symbols
130
+ requires_gene_mapping = True
131
+ # Extract gene annotation from SOFT file and get meaningful data
132
+ gene_annotation = get_gene_annotation(soft_file)
133
+
134
+ # Preview gene annotation data
135
+ print("Gene annotation shape:", gene_annotation.shape)
136
+ print("\nGene annotation preview:")
137
+ print(preview_df(gene_annotation))
138
+
139
+ print("\nNumber of non-null values in each column:")
140
+ print(gene_annotation.count())
141
+
142
+ # Print example rows showing the mapping columns
143
+ print("\nSample mapping information:")
144
+ print("ID -> GENE_SYMBOL mapping examples:")
145
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
146
+
147
+ print("\nNote: Gene mapping will use:")
148
+ print("'ID' column: Probe identifiers")
149
+ print("'GENE_SYMBOL' column: Gene symbols")
150
+ # Get mapping between probe IDs and gene symbols from annotation data
151
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
152
+
153
+ # Apply mapping to convert probe-level measurements to gene expression data
154
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
155
+
156
+ # Print info about gene data
157
+ print("Shape of mapped gene expression data:", gene_data.shape)
158
+ print("\nFirst few genes and their expression values:")
159
+ print(gene_data.head())
160
+ print("\nFirst 20 gene symbols:")
161
+ print(gene_data.index[:20])
162
+ # 1. Normalize gene symbols
163
+ gene_data = normalize_gene_symbols_in_index(gene_data)
164
+
165
+ # Save normalized gene data
166
+ gene_data.to_csv(out_gene_data_file)
167
+
168
+ # 2. Link clinical and genetic data
169
+ try:
170
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
171
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
172
+
173
+ # 3. Handle missing values
174
+ linked_data = handle_missing_values(linked_data, trait)
175
+
176
+ # 4. Determine if features are biased
177
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
178
+
179
+ # 5. Validate and save cohort info
180
+ is_usable = validate_and_save_cohort_info(
181
+ is_final=True,
182
+ cohort=cohort,
183
+ info_path=json_path,
184
+ is_gene_available=True,
185
+ is_trait_available=True,
186
+ is_biased=is_trait_biased,
187
+ df=linked_data,
188
+ note="Gene expression data successfully mapped and linked with clinical features"
189
+ )
190
+
191
+ # 6. Save linked data only if usable AND trait is not biased
192
+ if is_usable and not is_trait_biased:
193
+ linked_data.to_csv(out_data_file)
194
+
195
+ except Exception as e:
196
+ print(f"Error in data linking and processing: {str(e)}")
197
+ is_usable = validate_and_save_cohort_info(
198
+ is_final=True,
199
+ cohort=cohort,
200
+ info_path=json_path,
201
+ is_gene_available=True,
202
+ is_trait_available=True,
203
+ is_biased=True,
204
+ df=pd.DataFrame(),
205
+ note=f"Data processing failed: {str(e)}"
206
+ )
p3/preprocess/Alzheimers_Disease/code/GSE132903.py ADDED
@@ -0,0 +1,209 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE132903"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE132903"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE132903.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE132903.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE132903.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # Check gene expression data availability
37
+ # Based on background info mentioning "RNA expression" and "Illumina Human HT-12 v4 arrays"
38
+ is_gene_available = True
39
+
40
+ # Define row indices and conversion functions for clinical features
41
+ trait_row = 3 # diagnosis info in row 3
42
+ age_row = 2 # age info in row 2
43
+ gender_row = 1 # gender info in row 1
44
+
45
+ def convert_trait(x):
46
+ """Convert diagnosis to binary: 0=ND (control), 1=AD"""
47
+ if not x or ':' not in x:
48
+ return None
49
+ value = x.split(':')[1].strip().upper()
50
+ if value == 'AD':
51
+ return 1
52
+ elif value == 'ND':
53
+ return 0
54
+ return None
55
+
56
+ def convert_age(x):
57
+ """Convert age to continuous numeric value"""
58
+ if not x or ':' not in x:
59
+ return None
60
+ value = x.split(':')[1].strip()
61
+ if value.endswith('+'):
62
+ # For 90+, use 90 as conservative estimate
63
+ return float(value[:-1])
64
+ if value.replace('.','').isdigit():
65
+ return float(value)
66
+ return None
67
+
68
+ def convert_gender(x):
69
+ """Convert gender to binary: 0=female, 1=male"""
70
+ if not x or ':' not in x:
71
+ return None
72
+ value = x.split(':')[1].strip().lower()
73
+ if value == 'female':
74
+ return 0
75
+ elif value == 'male':
76
+ return 1
77
+ return None
78
+
79
+ # Save initial validation info
80
+ validate_and_save_cohort_info(
81
+ is_final=False,
82
+ cohort=cohort,
83
+ info_path=json_path,
84
+ is_gene_available=is_gene_available,
85
+ is_trait_available=trait_row is not None
86
+ )
87
+
88
+ # Extract clinical features if trait data available
89
+ if trait_row is not None:
90
+ clinical_features = geo_select_clinical_features(
91
+ clinical_df=clinical_data,
92
+ trait=trait,
93
+ trait_row=trait_row,
94
+ convert_trait=convert_trait,
95
+ age_row=age_row,
96
+ convert_age=convert_age,
97
+ gender_row=gender_row,
98
+ convert_gender=convert_gender
99
+ )
100
+
101
+ # Preview the processed clinical data
102
+ preview = preview_df(clinical_features)
103
+ print("Clinical data preview:", preview)
104
+
105
+ # Save clinical features
106
+ clinical_features.to_csv(out_clinical_data_file)
107
+ # Extract gene expression data from matrix file
108
+ gene_data = get_genetic_data(matrix_file)
109
+
110
+ # Print first 20 row IDs and shape of data to help debug
111
+ print("Shape of gene expression data:", gene_data.shape)
112
+ print("\nFirst few rows of data:")
113
+ print(gene_data.head())
114
+ print("\nFirst 20 gene/probe identifiers:")
115
+ print(gene_data.index[:20])
116
+
117
+ # Inspect a snippet of raw file to verify identifier format
118
+ import gzip
119
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
120
+ lines = []
121
+ for i, line in enumerate(f):
122
+ if "!series_matrix_table_begin" in line:
123
+ # Get the next 5 lines after the marker
124
+ for _ in range(5):
125
+ lines.append(next(f).strip())
126
+ break
127
+ print("\nFirst few lines after matrix marker in raw file:")
128
+ for line in lines:
129
+ print(line)
130
+ # The identifiers start with "ILMN_" which indicates these are Illumina probe IDs
131
+ # They need to be mapped to standard human gene symbols
132
+ requires_gene_mapping = True
133
+ # Extract gene annotation from SOFT file and get meaningful data
134
+ gene_annotation = get_gene_annotation(soft_file)
135
+
136
+ # Preview gene annotation data
137
+ print("Gene annotation shape:", gene_annotation.shape)
138
+ print("\nGene annotation preview:")
139
+ print(preview_df(gene_annotation))
140
+
141
+ print("\nNumber of non-null values in each column:")
142
+ print(gene_annotation.count())
143
+
144
+ # Print example rows showing the mapping columns
145
+ print("\nSample mapping information:")
146
+ print("ID -> Symbol mapping examples:")
147
+ print(gene_annotation[['ID', 'Symbol']].head().to_string())
148
+
149
+ print("\nNote: Gene mapping will use:")
150
+ print("'ID' column: Probe identifiers")
151
+ print("'Symbol' column: Gene symbols")
152
+ # Extract probe-gene mapping from annotation
153
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
154
+
155
+ # Convert probe-level measurements to gene-level expression
156
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
157
+
158
+ # Save gene data
159
+ gene_data.to_csv(out_gene_data_file)
160
+
161
+ # Preview the processed gene data
162
+ print("Shape of gene-level data:", gene_data.shape)
163
+ print("\nFirst few rows of gene data:")
164
+ print(gene_data.head())
165
+ # 1. Normalize gene symbols
166
+ gene_data = normalize_gene_symbols_in_index(gene_data)
167
+
168
+ # Save normalized gene data
169
+ gene_data.to_csv(out_gene_data_file)
170
+
171
+ # 2. Link clinical and genetic data
172
+ try:
173
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
174
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
175
+
176
+ # 3. Handle missing values
177
+ linked_data = handle_missing_values(linked_data, trait)
178
+
179
+ # 4. Determine if features are biased
180
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
181
+
182
+ # 5. Validate and save cohort info
183
+ is_usable = validate_and_save_cohort_info(
184
+ is_final=True,
185
+ cohort=cohort,
186
+ info_path=json_path,
187
+ is_gene_available=True,
188
+ is_trait_available=True,
189
+ is_biased=is_trait_biased,
190
+ df=linked_data,
191
+ note="Gene expression data successfully mapped and linked with clinical features"
192
+ )
193
+
194
+ # 6. Save linked data only if usable AND trait is not biased
195
+ if is_usable and not is_trait_biased:
196
+ linked_data.to_csv(out_data_file)
197
+
198
+ except Exception as e:
199
+ print(f"Error in data linking and processing: {str(e)}")
200
+ is_usable = validate_and_save_cohort_info(
201
+ is_final=True,
202
+ cohort=cohort,
203
+ info_path=json_path,
204
+ is_gene_available=True,
205
+ is_trait_available=True,
206
+ is_biased=True,
207
+ df=pd.DataFrame(),
208
+ note=f"Data processing failed: {str(e)}"
209
+ )
p3/preprocess/Alzheimers_Disease/code/GSE137202.py ADDED
@@ -0,0 +1,198 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE137202"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE137202"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE137202.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE137202.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE137202.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # From background info, this dataset uses Affymetrix PrimeView arrays for whole-genome expression profiling
38
+ is_gene_available = True
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # 2.1 Data Availability
42
+ # For trait, we can use genotype info from Feature 1 - distinguishes AD mutants from wild type
43
+ trait_row = 1
44
+ # Age and gender not available - this is a cell line study
45
+ age_row = None
46
+ gender_row = None
47
+
48
+ # 2.2 Data Type Conversion Functions
49
+ def convert_trait(value: str) -> int:
50
+ """Convert genotype info to binary trait (AD mutation = 1, wild type = 0)"""
51
+ if not value or ':' not in value:
52
+ return None
53
+ genotype = value.split(': ')[1].lower()
54
+ if 'wild type' in genotype:
55
+ return 0
56
+ elif 'mutated' in genotype: # Both APP and PSEN1 mutations are AD mutations
57
+ return 1
58
+ return None
59
+
60
+ def convert_age(value: str) -> float:
61
+ return None
62
+
63
+ def convert_gender(value: str) -> int:
64
+ return None
65
+
66
+ # 3. Save Metadata
67
+ # Initial filtering - only checking data availability at this stage
68
+ is_trait_available = trait_row is not None
69
+ validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # 4. Clinical Feature Extraction
78
+ # Since trait_row is not None, we extract clinical features
79
+ clinical_features = geo_select_clinical_features(
80
+ clinical_df=clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+
90
+ # Preview the extracted features
91
+ print("Preview of clinical features:")
92
+ print(preview_df(clinical_features))
93
+
94
+ # Save clinical data
95
+ clinical_features.to_csv(out_clinical_data_file)
96
+ # Extract gene expression data from matrix file
97
+ gene_data = get_genetic_data(matrix_file)
98
+
99
+ # Print first 20 row IDs and shape of data to help debug
100
+ print("Shape of gene expression data:", gene_data.shape)
101
+ print("\nFirst few rows of data:")
102
+ print(gene_data.head())
103
+ print("\nFirst 20 gene/probe identifiers:")
104
+ print(gene_data.index[:20])
105
+
106
+ # Inspect a snippet of raw file to verify identifier format
107
+ import gzip
108
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
109
+ lines = []
110
+ for i, line in enumerate(f):
111
+ if "!series_matrix_table_begin" in line:
112
+ # Get the next 5 lines after the marker
113
+ for _ in range(5):
114
+ lines.append(next(f).strip())
115
+ break
116
+ print("\nFirst few lines after matrix marker in raw file:")
117
+ for line in lines:
118
+ print(line)
119
+ # These identifiers are from Affymetrix microarray probes (e.g. "11715100_at")
120
+ # They need to be mapped to human gene symbols for analysis
121
+ requires_gene_mapping = True
122
+ # Extract gene annotation from SOFT file and get meaningful data
123
+ gene_annotation = get_gene_annotation(soft_file)
124
+
125
+ # Preview gene annotation data
126
+ print("Gene annotation shape:", gene_annotation.shape)
127
+ print("\nGene annotation preview:")
128
+ print(preview_df(gene_annotation))
129
+
130
+ print("\nNumber of non-null values in each column:")
131
+ print(gene_annotation.count())
132
+
133
+ # Print example rows showing the mapping columns
134
+ print("\nSample mapping information:")
135
+ print("ID -> Gene Symbol mapping examples:")
136
+ print(gene_annotation[['ID', 'Gene Symbol']].head().to_string())
137
+
138
+ print("\nNote: Gene mapping will use:")
139
+ print("'ID' column: Probe identifiers")
140
+ print("'Gene Symbol' column: Gene symbols")
141
+ # 1. Extract gene mapping columns from annotation data
142
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
143
+
144
+ # 2. Apply gene mapping to convert probe data to gene expression data
145
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
146
+
147
+ # 3. Normalize gene symbols to ensure consistency across different datasets
148
+ gene_data = normalize_gene_symbols_in_index(gene_data)
149
+
150
+ # Print gene data shape and preview
151
+ print("\nShape of mapped gene expression data:", gene_data.shape)
152
+ print("\nFirst few rows of mapped gene expression data:")
153
+ print(gene_data.head())
154
+ # 1. Normalize gene symbols
155
+ gene_data = normalize_gene_symbols_in_index(gene_data)
156
+
157
+ # Save normalized gene data
158
+ gene_data.to_csv(out_gene_data_file)
159
+
160
+ # 2. Link clinical and genetic data
161
+ try:
162
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
163
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
164
+
165
+ # 3. Handle missing values
166
+ linked_data = handle_missing_values(linked_data, trait)
167
+
168
+ # 4. Determine if features are biased
169
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
170
+
171
+ # 5. Validate and save cohort info
172
+ is_usable = validate_and_save_cohort_info(
173
+ is_final=True,
174
+ cohort=cohort,
175
+ info_path=json_path,
176
+ is_gene_available=True,
177
+ is_trait_available=True,
178
+ is_biased=is_trait_biased,
179
+ df=linked_data,
180
+ note="Gene expression data successfully mapped and linked with clinical features"
181
+ )
182
+
183
+ # 6. Save linked data only if usable AND trait is not biased
184
+ if is_usable and not is_trait_biased:
185
+ linked_data.to_csv(out_data_file)
186
+
187
+ except Exception as e:
188
+ print(f"Error in data linking and processing: {str(e)}")
189
+ is_usable = validate_and_save_cohort_info(
190
+ is_final=True,
191
+ cohort=cohort,
192
+ info_path=json_path,
193
+ is_gene_available=True,
194
+ is_trait_available=True,
195
+ is_biased=True,
196
+ df=pd.DataFrame(),
197
+ note=f"Data processing failed: {str(e)}"
198
+ )
p3/preprocess/Alzheimers_Disease/code/GSE139384.py ADDED
@@ -0,0 +1,215 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE139384"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE139384"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE139384.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE139384.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE139384.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on background info, this is a microarray study using HumanHT-12 v4 Expression BeadChip
38
+ # which contains gene expression data
39
+ is_gene_available = True
40
+
41
+ # 2.1 Data Availability
42
+ # trait_row = 1: 'clinical phenotypes' contains AD vs Control
43
+ # age_row = 2: contains age information
44
+ # gender_row = 1: contains gender information
45
+ trait_row = 1
46
+ age_row = 2
47
+ gender_row = 1
48
+
49
+ # 2.2 Data Type Conversion Functions
50
+ def convert_trait(value):
51
+ if pd.isna(value):
52
+ return None
53
+ if "clinical phenotypes:" not in value:
54
+ return None
55
+ value = value.split("clinical phenotypes:")[1].strip()
56
+ if value == "Alzheimer`s Disease":
57
+ return 1
58
+ elif value == "Healthy Control":
59
+ return 0
60
+ return None
61
+
62
+ def convert_age(value):
63
+ if pd.isna(value):
64
+ return None
65
+ if "age:" not in value:
66
+ return None
67
+ try:
68
+ age = float(value.split("age:")[1].strip())
69
+ return age
70
+ except:
71
+ return None
72
+
73
+ def convert_gender(value):
74
+ if pd.isna(value):
75
+ return None
76
+ if "gender:" not in value:
77
+ return None
78
+ value = value.split("gender:")[1].strip()
79
+ if value == "Female":
80
+ return 0
81
+ elif value == "Male":
82
+ return 1
83
+ return None
84
+
85
+ # 3. Save initial metadata
86
+ validate_and_save_cohort_info(
87
+ is_final=False,
88
+ cohort=cohort,
89
+ info_path=json_path,
90
+ is_gene_available=is_gene_available,
91
+ is_trait_available=True
92
+ )
93
+
94
+ # 4. Extract clinical features
95
+ selected_clinical_df = geo_select_clinical_features(
96
+ clinical_df=clinical_data,
97
+ trait=trait,
98
+ trait_row=trait_row,
99
+ convert_trait=convert_trait,
100
+ age_row=age_row,
101
+ convert_age=convert_age,
102
+ gender_row=gender_row,
103
+ convert_gender=convert_gender
104
+ )
105
+
106
+ # Preview the extracted clinical data
107
+ print(preview_df(selected_clinical_df))
108
+
109
+ # Save clinical data
110
+ selected_clinical_df.to_csv(out_clinical_data_file)
111
+ # Extract gene expression data from matrix file
112
+ gene_data = get_genetic_data(matrix_file)
113
+
114
+ # Print first 20 row IDs and shape of data to help debug
115
+ print("Shape of gene expression data:", gene_data.shape)
116
+ print("\nFirst few rows of data:")
117
+ print(gene_data.head())
118
+ print("\nFirst 20 gene/probe identifiers:")
119
+ print(gene_data.index[:20])
120
+
121
+ # Inspect a snippet of raw file to verify identifier format
122
+ import gzip
123
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
124
+ lines = []
125
+ for i, line in enumerate(f):
126
+ if "!series_matrix_table_begin" in line:
127
+ # Get the next 5 lines after the marker
128
+ for _ in range(5):
129
+ lines.append(next(f).strip())
130
+ break
131
+ print("\nFirst few lines after matrix marker in raw file:")
132
+ for line in lines:
133
+ print(line)
134
+ # Looking at the probe IDs like ILMN_1343291, these are Illumina BeadArray probe IDs
135
+ # which need to be mapped to human gene symbols for analysis
136
+ requires_gene_mapping = True
137
+ # Extract gene annotation from SOFT file and get meaningful data
138
+ gene_annotation = get_gene_annotation(soft_file)
139
+
140
+ # Preview gene annotation data
141
+ print("Gene annotation shape:", gene_annotation.shape)
142
+ print("\nGene annotation preview:")
143
+ print(preview_df(gene_annotation))
144
+
145
+ print("\nNumber of non-null values in each column:")
146
+ print(gene_annotation.count())
147
+
148
+ # Print example rows showing the mapping columns
149
+ print("\nSample mapping information:")
150
+ print("ID -> Symbol mapping examples:")
151
+ print(gene_annotation[['ID', 'Symbol']].head().to_string())
152
+
153
+ print("\nNote: Gene mapping will use:")
154
+ print("'ID' column: Probe identifiers")
155
+ print("'Symbol' column: Gene symbols")
156
+ # 1. Get mapping dataframe from gene annotation
157
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
158
+
159
+ # 2. Apply gene mapping to convert probe-level data to gene-level data
160
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
161
+
162
+ # 3. Normalize gene symbols using standard names from NCBI
163
+ gene_data = normalize_gene_symbols_in_index(gene_data)
164
+
165
+ # Preview results
166
+ print("Shape of gene expression data after mapping:", gene_data.shape)
167
+ print("\nFirst few rows of mapped gene data:")
168
+ print(gene_data.head())
169
+ print("\nFirst 20 gene symbols:")
170
+ print(gene_data.index[:20])
171
+ # 1. Normalize gene symbols
172
+ gene_data = normalize_gene_symbols_in_index(gene_data)
173
+
174
+ # Save normalized gene data
175
+ gene_data.to_csv(out_gene_data_file)
176
+
177
+ # 2. Link clinical and genetic data
178
+ try:
179
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
180
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
181
+
182
+ # 3. Handle missing values
183
+ linked_data = handle_missing_values(linked_data, trait)
184
+
185
+ # 4. Determine if features are biased
186
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
187
+
188
+ # 5. Validate and save cohort info
189
+ is_usable = validate_and_save_cohort_info(
190
+ is_final=True,
191
+ cohort=cohort,
192
+ info_path=json_path,
193
+ is_gene_available=True,
194
+ is_trait_available=True,
195
+ is_biased=is_trait_biased,
196
+ df=linked_data,
197
+ note="Gene expression data successfully mapped and linked with clinical features"
198
+ )
199
+
200
+ # 6. Save linked data only if usable AND trait is not biased
201
+ if is_usable and not is_trait_biased:
202
+ linked_data.to_csv(out_data_file)
203
+
204
+ except Exception as e:
205
+ print(f"Error in data linking and processing: {str(e)}")
206
+ is_usable = validate_and_save_cohort_info(
207
+ is_final=True,
208
+ cohort=cohort,
209
+ info_path=json_path,
210
+ is_gene_available=True,
211
+ is_trait_available=True,
212
+ is_biased=True,
213
+ df=pd.DataFrame(),
214
+ note=f"Data processing failed: {str(e)}"
215
+ )
p3/preprocess/Alzheimers_Disease/code/GSE167559.py ADDED
@@ -0,0 +1,107 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE167559"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE167559"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE167559.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE167559.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE167559.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on background info, this is a miRNA expression dataset, not gene expression
38
+ is_gene_available = False
39
+
40
+ # 2. Variable Availability and Data Type Conversion
41
+ # 2.1 Data Availability
42
+ # trait can be inferred from diagnosis field (1)
43
+ trait_row = 1
44
+ # age is in row 2
45
+ age_row = 2
46
+ # gender is in row 3 labeled as "Sex"
47
+ gender_row = 3
48
+
49
+ # 2.2 Data Type Conversion Functions
50
+ def convert_trait(x):
51
+ """Convert diagnosis to binary for AD vs non-AD"""
52
+ if not isinstance(x, str):
53
+ return None
54
+ val = x.split(': ')[-1].strip().upper()
55
+ # NPH is a non-AD dementia
56
+ if val == 'NPH':
57
+ return 0
58
+ return None
59
+
60
+ def convert_age(x):
61
+ """Convert age to continuous numeric"""
62
+ if not isinstance(x, str):
63
+ return None
64
+ try:
65
+ return float(x.split(': ')[-1].strip())
66
+ except:
67
+ return None
68
+
69
+ def convert_gender(x):
70
+ """Convert gender to binary (0=female, 1=male)"""
71
+ if not isinstance(x, str):
72
+ return None
73
+ val = x.split(': ')[-1].strip().lower()
74
+ if val == 'female':
75
+ return 0
76
+ elif val == 'male':
77
+ return 1
78
+ return None
79
+
80
+ # 3. Save Metadata
81
+ validate_and_save_cohort_info(
82
+ is_final=False,
83
+ cohort=cohort,
84
+ info_path=json_path,
85
+ is_gene_available=is_gene_available,
86
+ is_trait_available=trait_row is not None
87
+ )
88
+
89
+ # 4. Clinical Feature Extraction
90
+ if trait_row is not None:
91
+ clinical_features = geo_select_clinical_features(
92
+ clinical_df=clinical_data,
93
+ trait=trait,
94
+ trait_row=trait_row,
95
+ convert_trait=convert_trait,
96
+ age_row=age_row,
97
+ convert_age=convert_age,
98
+ gender_row=gender_row,
99
+ convert_gender=convert_gender
100
+ )
101
+
102
+ # Preview extracted features
103
+ print("Preview of clinical features:")
104
+ print(preview_df(clinical_features))
105
+
106
+ # Save to CSV
107
+ clinical_features.to_csv(out_clinical_data_file)
p3/preprocess/Alzheimers_Disease/code/GSE185909.py ADDED
@@ -0,0 +1,222 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE185909"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE185909"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE185909.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE185909.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE185909.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # Gene expression data availability
37
+ # From the background info, we can see this dataset uses Nimblegen expression arrays for human frontal cortex
38
+ # This indicates it contains gene expression data
39
+ is_gene_available = True
40
+
41
+ # Clinical feature variables
42
+ # From the sample characteristics, diagnosis info is in Feature 0
43
+ trait_row = 0
44
+
45
+ # Gender info is in Feature 1
46
+ gender_row = 1
47
+
48
+ # Age info is in Feature 2
49
+ age_row = 2
50
+
51
+ def convert_trait(value):
52
+ if not isinstance(value, str):
53
+ return None
54
+ value = value.lower().split(': ')[-1]
55
+ # Convert diagnosis to binary (AD vs non-AD)
56
+ if value == 'ad':
57
+ return 1
58
+ elif value in ['mci', 'nci']:
59
+ return 0
60
+ return None
61
+
62
+ def convert_gender(value):
63
+ if not isinstance(value, str):
64
+ return None
65
+ value = value.lower().split(': ')[-1]
66
+ if value == 'female':
67
+ return 0
68
+ elif value == 'male':
69
+ return 1
70
+ return None
71
+
72
+ def convert_age(value):
73
+ if not isinstance(value, str):
74
+ return None
75
+ try:
76
+ # Extract numeric value after colon
77
+ age = float(value.split(': ')[-1])
78
+ return age
79
+ except:
80
+ return None
81
+
82
+ # Save metadata for initial filtering
83
+ validate_and_save_cohort_info(
84
+ is_final=False,
85
+ cohort=cohort,
86
+ info_path=json_path,
87
+ is_gene_available=is_gene_available,
88
+ is_trait_available=trait_row is not None
89
+ )
90
+
91
+ # Extract clinical features since trait_row is not None
92
+ clinical_df = geo_select_clinical_features(
93
+ clinical_data,
94
+ trait=trait,
95
+ trait_row=trait_row,
96
+ convert_trait=convert_trait,
97
+ age_row=age_row,
98
+ convert_age=convert_age,
99
+ gender_row=gender_row,
100
+ convert_gender=convert_gender
101
+ )
102
+
103
+ # Preview the extracted features
104
+ preview_dict = preview_df(clinical_df)
105
+ print("Preview of clinical features:")
106
+ print(preview_dict)
107
+
108
+ # Save clinical data
109
+ clinical_df.to_csv(out_clinical_data_file)
110
+ # Extract gene expression data from matrix file
111
+ gene_data = get_genetic_data(matrix_file)
112
+
113
+ # Print first 20 row IDs and shape of data to help debug
114
+ print("Shape of gene expression data:", gene_data.shape)
115
+ print("\nFirst few rows of data:")
116
+ print(gene_data.head())
117
+ print("\nFirst 20 gene/probe identifiers:")
118
+ print(gene_data.index[:20])
119
+
120
+ # Inspect a snippet of raw file to verify identifier format
121
+ import gzip
122
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
123
+ lines = []
124
+ for i, line in enumerate(f):
125
+ if "!series_matrix_table_begin" in line:
126
+ # Get the next 5 lines after the marker
127
+ for _ in range(5):
128
+ lines.append(next(f).strip())
129
+ break
130
+ print("\nFirst few lines after matrix marker in raw file:")
131
+ for line in lines:
132
+ print(line)
133
+ # Looking at the identifiers (e.g. AB000409, AB000463 etc),
134
+ # these appear to be GenBank accession numbers rather than human gene symbols
135
+ # These will need to be mapped to official gene symbols
136
+ requires_gene_mapping = True
137
+ # Extract gene annotation from SOFT file and get meaningful data
138
+ gene_annotation = get_gene_annotation(soft_file)
139
+
140
+ # Preview gene annotation data
141
+ print("Gene annotation shape:", gene_annotation.shape)
142
+ print("\nGene annotation preview:")
143
+ print(preview_df(gene_annotation))
144
+
145
+ print("\nNumber of non-null values in each column:")
146
+ print(gene_annotation.count())
147
+
148
+ # Print example rows showing the mapping columns
149
+ print("\nSample mapping information:")
150
+ print("ID -> Description mapping examples:")
151
+ print(gene_annotation[['ID', 'DESCRIPTION']].head().to_string())
152
+
153
+ print("\nNote: Gene mapping will use:")
154
+ print("'ID' column: Probe identifiers")
155
+ print("'DESCRIPTION' column: Gene descriptions containing gene names")
156
+ # Get gene mapping dataframe using ID and DESCRIPTION columns
157
+ mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='DESCRIPTION')
158
+
159
+ # Extract gene symbols using the function (which handles messy descriptions)
160
+ mapping_df['Gene'] = mapping_df['Gene'].apply(extract_human_gene_symbols)
161
+
162
+ # Explode lists of gene symbols to get one-to-many mapping
163
+ mapping_df = mapping_df.explode('Gene')
164
+ mapping_df = mapping_df.dropna(subset=['Gene'])
165
+
166
+ # Apply gene mapping to convert probe measurements to gene expression
167
+ gene_data = apply_gene_mapping(gene_data, mapping_df)
168
+
169
+ # Normalize gene symbols to standard HGNC symbols
170
+ gene_data = normalize_gene_symbols_in_index(gene_data)
171
+
172
+ # Print shape and preview to verify the mapping
173
+ print("Gene expression data shape after mapping:", gene_data.shape)
174
+ print("\nPreview of mapped gene expression data:")
175
+ print(gene_data.head())
176
+ print("\nFirst 20 gene symbols:")
177
+ print(gene_data.index[:20])
178
+ # 1. Normalize gene symbols
179
+ gene_data = normalize_gene_symbols_in_index(gene_data)
180
+
181
+ # Save normalized gene data
182
+ gene_data.to_csv(out_gene_data_file)
183
+
184
+ # 2. Link clinical and genetic data
185
+ try:
186
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
187
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
188
+
189
+ # 3. Handle missing values
190
+ linked_data = handle_missing_values(linked_data, trait)
191
+
192
+ # 4. Determine if features are biased
193
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
194
+
195
+ # 5. Validate and save cohort info
196
+ is_usable = validate_and_save_cohort_info(
197
+ is_final=True,
198
+ cohort=cohort,
199
+ info_path=json_path,
200
+ is_gene_available=True,
201
+ is_trait_available=True,
202
+ is_biased=is_trait_biased,
203
+ df=linked_data,
204
+ note="Gene expression data successfully mapped and linked with clinical features"
205
+ )
206
+
207
+ # 6. Save linked data only if usable AND trait is not biased
208
+ if is_usable and not is_trait_biased:
209
+ linked_data.to_csv(out_data_file)
210
+
211
+ except Exception as e:
212
+ print(f"Error in data linking and processing: {str(e)}")
213
+ is_usable = validate_and_save_cohort_info(
214
+ is_final=True,
215
+ cohort=cohort,
216
+ info_path=json_path,
217
+ is_gene_available=True,
218
+ is_trait_available=True,
219
+ is_biased=True,
220
+ df=pd.DataFrame(),
221
+ note=f"Data processing failed: {str(e)}"
222
+ )
p3/preprocess/Alzheimers_Disease/code/GSE214417.py ADDED
@@ -0,0 +1,205 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Alzheimers_Disease"
6
+ cohort = "GSE214417"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Alzheimers_Disease"
10
+ in_cohort_dir = "../DATA/GEO/Alzheimers_Disease/GSE214417"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Alzheimers_Disease/GSE214417.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Alzheimers_Disease/gene_data/GSE214417.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Alzheimers_Disease/clinical_data/GSE214417.csv"
16
+ json_path = "./output/preprocess/3/Alzheimers_Disease/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = True # Gene expression data likely available based on brain tissue study
38
+
39
+ # 2.1 Data Availability
40
+ trait_row = 5 # APP+PSEN genotype indicates AD model status
41
+ age_row = 3 # Age information available
42
+ gender_row = 2 # Gender information available but constant (all male)
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(x: str) -> int:
46
+ """Convert genotype to binary AD status"""
47
+ if not x or ':' not in x:
48
+ return None
49
+ value = x.split(':')[1].strip()
50
+ if '+ APP + PSEN' in value:
51
+ return 1 # AD model
52
+ elif '- APP - PSEN' in value:
53
+ return 0 # Control
54
+ return None
55
+
56
+ def convert_age(x: str) -> float:
57
+ """Convert age to continuous months"""
58
+ if not x or ':' not in x:
59
+ return None
60
+ value = x.split(':')[1].strip()
61
+ try:
62
+ return float(value.split()[0]) # Extract number before "months"
63
+ except:
64
+ return None
65
+
66
+ def convert_gender(x: str) -> int:
67
+ """Convert gender to binary"""
68
+ if not x or ':' not in x:
69
+ return None
70
+ value = x.split(':')[1].strip()
71
+ if value.lower() == 'male':
72
+ return 1
73
+ elif value.lower() == 'female':
74
+ return 0
75
+ return None
76
+
77
+ # 3. Save metadata
78
+ is_trait_available = trait_row is not None
79
+ _ = validate_and_save_cohort_info(is_final=False,
80
+ cohort=cohort,
81
+ info_path=json_path,
82
+ is_gene_available=is_gene_available,
83
+ is_trait_available=is_trait_available)
84
+
85
+ # 4. Extract clinical features
86
+ if trait_row is not None:
87
+ clinical_features = geo_select_clinical_features(
88
+ clinical_df=clinical_data,
89
+ trait=trait,
90
+ trait_row=trait_row,
91
+ convert_trait=convert_trait,
92
+ age_row=age_row,
93
+ convert_age=convert_age,
94
+ gender_row=gender_row,
95
+ convert_gender=convert_gender
96
+ )
97
+
98
+ # Preview the extracted features
99
+ preview = preview_df(clinical_features)
100
+ print("Preview of clinical features:")
101
+ print(preview)
102
+
103
+ # Save to CSV
104
+ os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
105
+ clinical_features.to_csv(out_clinical_data_file)
106
+ # Extract gene expression data from matrix file
107
+ gene_data = get_genetic_data(matrix_file)
108
+
109
+ # Print first 20 row IDs and shape of data to help debug
110
+ print("Shape of gene expression data:", gene_data.shape)
111
+ print("\nFirst few rows of data:")
112
+ print(gene_data.head())
113
+ print("\nFirst 20 gene/probe identifiers:")
114
+ print(gene_data.index[:20])
115
+
116
+ # Inspect a snippet of raw file to verify identifier format
117
+ import gzip
118
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
119
+ lines = []
120
+ for i, line in enumerate(f):
121
+ if "!series_matrix_table_begin" in line:
122
+ # Get the next 5 lines after the marker
123
+ for _ in range(5):
124
+ lines.append(next(f).strip())
125
+ break
126
+ print("\nFirst few lines after matrix marker in raw file:")
127
+ for line in lines:
128
+ print(line)
129
+ # Examining the gene identifiers
130
+ # The identifiers are just numeric indices (1,2,3...) and not gene symbols
131
+ # This indicates we need to map these IDs to actual gene symbols
132
+ requires_gene_mapping = True
133
+ # Extract gene annotation from SOFT file and get meaningful data
134
+ gene_annotation = get_gene_annotation(soft_file)
135
+
136
+ # Preview gene annotation data
137
+ print("Gene annotation shape:", gene_annotation.shape)
138
+ print("\nGene annotation preview:")
139
+ print(preview_df(gene_annotation))
140
+
141
+ print("\nNumber of non-null values in each column:")
142
+ print(gene_annotation.count())
143
+
144
+ # Print example rows showing the mapping columns
145
+ print("\nSample mapping columns ('ID' and 'GENE_SYMBOL'):")
146
+ print(gene_annotation[['ID', 'GENE_SYMBOL']].head().to_string())
147
+
148
+ print("\nNote: Gene mapping will use:")
149
+ print("'ID' column: Probe identifiers")
150
+ print("'GENE_SYMBOL' column: Gene symbols")
151
+ # Get gene mapping from annotation data
152
+ mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
153
+
154
+ # Apply mapping to convert probe-level data to gene expression data
155
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
156
+
157
+ # Print shape and preview to verify transformation
158
+ print("Shape of mapped gene expression data:", gene_data.shape)
159
+ print("\nPreview of gene expression data:")
160
+ print(gene_data.head())
161
+ # 1. Normalize gene symbols
162
+ gene_data = normalize_gene_symbols_in_index(gene_data)
163
+
164
+ # Save normalized gene data
165
+ gene_data.to_csv(out_gene_data_file)
166
+
167
+ # 2. Link clinical and genetic data
168
+ try:
169
+ clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
170
+ linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
171
+
172
+ # 3. Handle missing values
173
+ linked_data = handle_missing_values(linked_data, trait)
174
+
175
+ # 4. Determine if features are biased
176
+ is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
177
+
178
+ # 5. Validate and save cohort info
179
+ is_usable = validate_and_save_cohort_info(
180
+ is_final=True,
181
+ cohort=cohort,
182
+ info_path=json_path,
183
+ is_gene_available=True,
184
+ is_trait_available=True,
185
+ is_biased=is_trait_biased,
186
+ df=linked_data,
187
+ note="Gene expression data successfully mapped and linked with clinical features"
188
+ )
189
+
190
+ # 6. Save linked data only if usable AND trait is not biased
191
+ if is_usable and not is_trait_biased:
192
+ linked_data.to_csv(out_data_file)
193
+
194
+ except Exception as e:
195
+ print(f"Error in data linking and processing: {str(e)}")
196
+ is_usable = validate_and_save_cohort_info(
197
+ is_final=True,
198
+ cohort=cohort,
199
+ info_path=json_path,
200
+ is_gene_available=True,
201
+ is_trait_available=True,
202
+ is_biased=True,
203
+ df=pd.DataFrame(),
204
+ note=f"Data processing failed: {str(e)}"
205
+ )