File size: 6,977 Bytes
4c09b1c |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Amyotrophic_Lateral_Sclerosis"
cohort = "GSE139384"
# Input paths
in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE139384"
# Output paths
out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE139384.csv"
out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE139384.csv"
out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE139384.csv"
json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# Gene expression data availability check - Yes, it uses Illumina HumanHT-12 v4 Expression BeadChip
is_gene_available = True
# Variable Data Mapping and Conversion Functions
# Trait data is in Feature 0 and 1, need to map clinical phenotypes
trait_row = 0 # Using Feature 0 as primary source
def convert_trait(value):
if 'clinical phenotypes:' not in str(value):
return None
value = str(value).split('clinical phenotypes:')[1].strip().lower()
# ALS vs non-ALS binary classification
if 'als' in value or 'als+d' in value or 'pdc+a' in value:
return 1 # ALS or ALS-related
elif value in ['healthy control', 'alzheimer`s disease', 'pdc']:
return 0 # Non-ALS
return None
# Age data is in Feature 2 and 3
age_row = 2 # Using Feature 2 as primary source
def convert_age(value):
if 'age:' not in str(value):
return None
try:
return float(str(value).split('age:')[1].strip())
except:
return None
# Gender data is in Feature 1 and 2
gender_row = 1 # Using Feature 1 as primary source
def convert_gender(value):
if 'gender:' not in str(value):
return None
value = str(value).split('gender:')[1].strip().lower()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# Initial filtering and metadata saving
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# Clinical feature extraction since trait_row is not None
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical features
preview = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview)
# Save clinical features to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The gene identifiers start with "ILMN_", which stands for Illumina array probe IDs
# These are not human gene symbols and need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file and get meaningful data
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))
print("\nNumber of non-null values in each column:")
print(gene_annotation.count())
print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers")
print("'Symbol' column: Contains gene symbols")
print("\nExample Symbol value:")
print(gene_annotation['Symbol'].iloc[0])
# Get gene mapping dataframe from annotation
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Symbol')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Print output to verify results
print("Shape of gene-level data:", gene_data.shape)
print("\nFirst few rows of mapped gene data:")
print(gene_data.head())
print("\nFirst 20 gene symbols:")
print(gene_data.index[:20])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save normalized gene data
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
try:
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Determine if features are biased
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note="Gene expression data successfully mapped and linked with clinical features"
)
# 6. Save linked data only if usable AND trait is not biased
if is_usable and not is_trait_biased:
linked_data.to_csv(out_data_file)
except Exception as e:
print(f"Error in data linking and processing: {str(e)}")
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=True,
df=pd.DataFrame(),
note=f"Data processing failed: {str(e)}"
) |