File size: 5,678 Bytes
4c09b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Amyotrophic_Lateral_Sclerosis"
cohort = "GSE212134"

# Input paths
in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE212134"

# Output paths
out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE212134.csv"
out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE212134.csv"
out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE212134.csv"
json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Dataset mentions mRNA, indicating gene expression data

# 2.1 Variable Keys
trait_row = None # Cannot find any disease status indication in sample characteristics
age_row = None  # Age data not available in sample characteristics
gender_row = 0   # Gender data is in first row (index 0)

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    return None  # No trait data available

def convert_age(value): 
    return None  # No age data available

def convert_gender(value):
    if not isinstance(value, str):
        return None
    value = value.lower().split(': ')[-1]
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Skip clinical feature extraction since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# These IDs are numeric probe IDs from a microarray platform, not gene symbols
# They need to be mapped to human gene symbols for meaningful analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers") 
print("'Symbol' column: Gene name mapping")
# Step 1: 'ID' column in annotation matches numeric probe IDs in expression data
# For gene symbols, need to extract from 'gene_assignment' which has format:
# "NR_024005 // DDX11L2 // description // location // ID"

# Extract gene symbols from gene_assignment column
def extract_gene_symbol(assignment):
    if pd.isna(assignment) or assignment == '---':
        return None
    # Split by // and take the second item which is the gene symbol
    parts = assignment.split('//')
    if len(parts) >= 2:
        return parts[1].strip()
    return None

# Add Symbol column with extracted gene symbols
gene_annotation['Symbol'] = gene_annotation['gene_assignment'].apply(extract_gene_symbol)

# Step 2: Create mapping dataframe with probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')

# Step 3: Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview the mapped gene data
print("Gene expression data after mapping:")
print("Shape:", gene_data.shape)
print("\nFirst few rows:")
print(gene_data.head())
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save normalized gene data 
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Since no trait data is available (trait_row was None), validate and mark dataset as unusable
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,  # Dataset without trait data is biased/unusable
    df=gene_data,
    note="Gene expression data successfully processed but no trait information available for analysis"
)