File size: 4,903 Bytes
4c09b1c
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Amyotrophic_Lateral_Sclerosis"
cohort = "GSE52937"

# Input paths
in_trait_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis"
in_cohort_dir = "../DATA/GEO/Amyotrophic_Lateral_Sclerosis/GSE52937"

# Output paths
out_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/GSE52937.csv"
out_gene_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/gene_data/GSE52937.csv"
out_clinical_data_file = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/clinical_data/GSE52937.csv"
json_path = "./output/preprocess/3/Amyotrophic_Lateral_Sclerosis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# This is likely a gene expression dataset based on series title and design
# investigating genetic factors in ALS, not miRNA or methylation
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# No trait data comparing ALS vs controls - just cell lines with SETX knockdown
trait_row = None  # No ALS trait data
age_row = None  # Age not available 
gender_row = None  # Gender not available

def convert_trait(x):
    return None

def convert_age(x):
    return None
    
def convert_gender(x):
    return None

# 3. Save Metadata 
# Initial filtering - trait_row is None so trait data not available
is_trait_available = trait_row is not None
validate_and_save_cohort_info(False, cohort, json_path, 
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Skip since trait_row is None and clinical data not available
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Observe gene identifiers starting with 'ILMN_', which indicates Illumina probe IDs
# These are not human gene symbols and need to be mapped
requires_gene_mapping = True
# Extract gene annotation from SOFT file and get meaningful data 
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation preview:")
print(preview_df(gene_annotation))

print("\nNumber of non-null values in each column:")
print(gene_annotation.count())

print("\nNote: Gene mapping will use:")
print("'ID' column: Probe identifiers") 
print("'Symbol' column: Gene name mapping")
# 1. Extract mapping columns from gene annotation data
prob_col = 'ID'  # Column with Illumina probe IDs (ILMN_*)
gene_col = 'Symbol'  # Column with gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)

# 2. Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# 3. Normalize gene symbols to ensure consistency
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene data
gene_data.to_csv(out_gene_data_file)
# Since trait data is not available (trait_row=None from Step 2), skip data linking
# Only need to save normalized gene data and validate cohort info

# Save normalized gene data
gene_data.to_csv(out_gene_data_file)

# Validate and save cohort info, indicating trait data not available
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,  # No trait data available
    is_biased=True,  # Set to True since dataset lacks trait data
    df=gene_data,    # Pass gene expression data
    note="Dataset contains gene expression data but lacks trait information"
)