File size: 5,998 Bytes
0a8b3ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Bladder_Cancer"
cohort = "GSE138118"
# Input paths
in_trait_dir = "../DATA/GEO/Bladder_Cancer"
in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE138118"
# Output paths
out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE138118.csv"
out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE138118.csv"
out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE138118.csv"
json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True # Based on the series title and summary, this is gene expression data from blood
# 2.1 Data Availability
trait_row = 0 # "stage at sample" contains cancer status
age_row = 1 # Age information is available
gender_row = None # Gender information is not available in the characteristics
# 2.2 Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
value = x.split(': ')[-1].strip()
# Convert to binary: Healthy=0, Any cancer stage=1
if value == 'Healthy':
return 0
elif value in ['G1', 'G2', 'G3', 'G1 pTa', 'G2 pTa']:
return 1
return None
def convert_age(x):
if pd.isna(x):
return None
value = x.split(': ')[-1].strip()
try:
# Convert to continuous numeric value
return float(value)
except:
return None
def convert_gender(x):
return None # Not used since gender data is not available
# 3. Save Initial Filtering Results
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age
)
# Preview the processed clinical data
preview_result = preview_df(clinical_df)
print("Preview of processed clinical data:")
print(preview_result)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Observe the gene identifiers
# The identifiers are numeric strings starting with '16650', which appears to be probe IDs
# These are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Get gene mapping data from annotation
# For this dataset:
# ID column contains probe IDs matching gene expression data
# gene_assignment column contains gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
# Apply gene mapping to convert probe expression to gene expression
# The apply_gene_mapping function handles many-to-many mappings
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Preview data shape and first few rows
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Load previously saved clinical data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="NanoString nCounter RNA profiling data for bladder cancer recurrence study"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |