File size: 5,998 Bytes
0a8b3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Bladder_Cancer"
cohort = "GSE138118"

# Input paths
in_trait_dir = "../DATA/GEO/Bladder_Cancer"
in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE138118"

# Output paths
out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE138118.csv"
out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE138118.csv"
out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE138118.csv"
json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on the series title and summary, this is gene expression data from blood

# 2.1 Data Availability
trait_row = 0  # "stage at sample" contains cancer status
age_row = 1    # Age information is available
gender_row = None  # Gender information is not available in the characteristics

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    value = x.split(': ')[-1].strip()
    # Convert to binary: Healthy=0, Any cancer stage=1
    if value == 'Healthy':
        return 0
    elif value in ['G1', 'G2', 'G3', 'G1 pTa', 'G2 pTa']:
        return 1
    return None

def convert_age(x):
    if pd.isna(x):
        return None
    value = x.split(': ')[-1].strip()
    try:
        # Convert to continuous numeric value
        return float(value)
    except:
        return None

def convert_gender(x):
    return None  # Not used since gender data is not available

# 3. Save Initial Filtering Results
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age
)

# Preview the processed clinical data
preview_result = preview_df(clinical_df)
print("Preview of processed clinical data:")
print(preview_result)

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Observe the gene identifiers
# The identifiers are numeric strings starting with '16650', which appears to be probe IDs
# These are not standard human gene symbols and will need to be mapped
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Get gene mapping data from annotation
# For this dataset:
# ID column contains probe IDs matching gene expression data
# gene_assignment column contains gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Apply gene mapping to convert probe expression to gene expression
# The apply_gene_mapping function handles many-to-many mappings
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Preview data shape and first few rows
print("Shape of gene expression data:", gene_data.shape) 
print("\nFirst few rows:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# Load previously saved clinical data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="NanoString nCounter RNA profiling data for bladder cancer recurrence study"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)