File size: 6,621 Bytes
0a8b3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Bladder_Cancer"
cohort = "GSE145261"

# Input paths
in_trait_dir = "../DATA/GEO/Bladder_Cancer"
in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE145261"

# Output paths
out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE145261.csv"
out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE145261.csv"
out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE145261.csv"
json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on context, this dataset studies carcinoma with molecular analysis

# 2. Variable Availability and Data Type Conversion
# 2.1 Row identification
trait_row = 3  # "tissue type" contains SCC vs UC info
age_row = 0    # "subject age" contains age info
gender_row = 1 # "subject gender" contains gender info

# 2.2 Conversion functions
def convert_trait(x):
    # Binary: SCC (1) vs UC (0) 
    if not isinstance(x, str):
        return None
    x = x.lower()
    if 'scc' in x or 'small cell' in x:
        return 1
    elif 'uc' in x or 'urothelial' in x:
        return 0
    return None

def convert_age(x):
    # Continuous: extract age in years
    if not isinstance(x, str):
        return None
    try:
        age = int(''.join(filter(str.isdigit, x)))
        if 0 <= age <= 120:  # Basic age validation
            return age
        return None
    except:
        return None

def convert_gender(x):
    # Binary: female (0) vs male (1)
    if not isinstance(x, str):
        return None
    x = x.lower()
    if 'female' in x:
        return 0
    elif 'male' in x:
        return 1
    return None

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract clinical features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview_data = preview_df(selected_clinical_df)
    print("Preview of extracted clinical features:", preview_data)
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# These are Illumina probes (starting with ILMN_), not gene symbols
# We'll need to map them to human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file using default prefixes
gene_annotation = get_gene_annotation(soft_file)

# Preview gene annotation data
print("Gene annotation shape:", gene_annotation.shape)
print("\nGene annotation columns and first few values:")
print(preview_df(gene_annotation))

# Also inspect the raw SOFT file annotation section to verify parsing
import gzip
with gzip.open(soft_file, 'rt') as f:
    found_table = False
    lines = []
    for line in f:
        if '!platform_table_begin' in line.lower():
            found_table = True
            lines.append(next(f))  # Get header line
            for _ in range(3):  # Get first 3 data lines
                lines.append(next(f))
            break
            
if found_table:
    print("\nRaw annotation format in SOFT file:")
    for line in lines:
        print(line.strip())
# Extract gene mapping from annotation
# 'ID' column contains probe IDs (ILMN_*) matching the gene expression data
# 'Symbol' column contains gene symbols we want to map to
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')

# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, gene_mapping)

# Print info about the conversion
print("Shape of mapped gene expression data:", gene_data.shape) 
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="NanoString nCounter RNA profiling data for bladder cancer recurrence study"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)