File size: 4,913 Bytes
0a8b3ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Bladder_Cancer"
cohort = "GSE201395"
# Input paths
in_trait_dir = "../DATA/GEO/Bladder_Cancer"
in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE201395"
# Output paths
out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE201395.csv"
out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE201395.csv"
out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE201395.csv"
json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# This dataset uses Affymetrix HTA 2.0 platform for gene expression profiling
is_gene_available = True
# 2.1 Data Availability
trait_row = None # All are cancer cell lines, no disease status comparison
age_row = None # Age not relevant for cell lines
gender_row = None # Gender not relevant for cell lines
# 2.2 Data Type Conversion Functions
def convert_trait(x):
return None # Not applicable as all samples are cancer cell lines
def convert_age(x):
return None # Not applicable for cell lines
def convert_gender(x):
return None # Not applicable for cell lines
# 3. Save metadata
is_initial_check = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Skip clinical feature extraction since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The IDs end with "_st" which indicates these are Affymetrix probeset IDs
# They need to be mapped to standard human gene symbols
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Extract probe-gene mapping from annotation data
prob_col = 'probeset_id'
gene_col = 'gene_assignment'
# First extract columns and rename
gene_mapping = gene_annotation[[prob_col, gene_col]]
gene_mapping = gene_mapping.rename(columns={prob_col: 'ID', gene_col: 'Gene'})
gene_mapping = gene_mapping.dropna()
gene_mapping = gene_mapping.astype({'ID': 'str'})
# Apply the gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# Normalize gene symbols using NCBI synonym data
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save processed gene data
gene_data.to_csv(out_gene_data_file)
# Print shape and preview of processed data
print("Shape of processed gene expression data:", gene_data.shape)
print("\nFirst few rows of processed data:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2-6. Skip clinical linking since no trait data available
is_biased = True # No trait data means biased by definition
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=is_biased,
df=gene_data.T,
note="All samples are cancer cases (no controls), making trait data unavailable for associative analysis."
) |