File size: 7,947 Bytes
0a8b3ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Bladder_Cancer"
cohort = "GSE222073"
# Input paths
in_trait_dir = "../DATA/GEO/Bladder_Cancer"
in_cohort_dir = "../DATA/GEO/Bladder_Cancer/GSE222073"
# Output paths
out_data_file = "./output/preprocess/3/Bladder_Cancer/GSE222073.csv"
out_gene_data_file = "./output/preprocess/3/Bladder_Cancer/gene_data/GSE222073.csv"
out_clinical_data_file = "./output/preprocess/3/Bladder_Cancer/clinical_data/GSE222073.csv"
json_path = "./output/preprocess/3/Bladder_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this appears to be a gene expression dataset based on mentions of RNA subtypes and labeling kits
is_gene_available = True
# 2.1 Data Availability
# Trait: Available from various metastasis indicators (rm-* fields)
# Will use rm-bone as representative of metastasis
trait_row = 11
# Age and Gender not available in sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert bone metastasis status to binary (0: no, 1: yes)"""
if not isinstance(value, str):
return None
value = value.lower()
if 'rm-bone:' not in value:
return None
value = value.split('rm-bone:')[1].strip()
if value == 'yes':
return 1
elif value == 'no':
return 0
return None
def convert_age(value: str) -> float:
"""Placeholder for age conversion"""
return None
def convert_gender(value: str) -> int:
"""Placeholder for gender conversion"""
return None
# 3. Save Initial Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of clinical data:")
print(preview)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Looking at the gene identifiers, we see a mix of symbols like 'A2M', 'A4GALT' which are human gene symbols,
# and some numbered identifiers like '1-Mar', '2-Mar' etc.
# The presence of 'Mar' suggests these might be month-related probe identifiers that need mapping.
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# First locate the platform table section in SOFT file
import gzip
table_begin = None
table_end = None
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
for i, line in enumerate(f):
if '!platform_table_begin' in line.lower():
table_begin = i
elif '!platform_table_end' in line.lower() and table_begin is not None:
table_end = i
break
# Read annotation data between markers using skiprows and nrows
import pandas as pd
if table_begin is not None and table_end is not None:
gene_annotation = pd.read_csv(soft_file, compression='gzip', skiprows=table_begin+1,
nrows=table_end-table_begin-1, sep='\t')
else:
# Fallback to original method if markers not found
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation preview:")
print(preview_df(gene_annotation))
# Display all column names
print("\nAll column names in annotation data:")
print(gene_annotation.columns.tolist())
# In this dataset, the probe ID "A2M" in the gene expression data should be matched to the gene symbol in 'ORF' column
gene_mapping = get_gene_mapping(annotation=gene_annotation, prob_col='ID', gene_col='ORF')
# Convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(expression_df=gene_data, mapping_df=gene_mapping)
# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Preview results
print("Shape of mapped gene expression data:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
# Remove "-mRNA" suffix from gene symbols before normalization
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data and trait
# First get selected clinical features using the extraction function from previous step
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Debug data structures before linking
print("\nPre-linking data shapes:")
print("Clinical data shape:", selected_clinical.shape)
print("Gene data shape:", gene_data.shape)
print("\nClinical data preview:")
print(selected_clinical.head())
# Transpose gene data to match clinical data orientation
gene_data_t = gene_data.T
linked_data = pd.concat([selected_clinical.T, gene_data_t], axis=1)
# 3. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and remove them if needed
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Validate data quality and save metadata
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Gene expression data from pancreatic cancer study. All samples are cancer cases (no controls)."
)
# 6. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file) |