File size: 5,511 Bytes
0a8b3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Breast_Cancer"
cohort = "GSE207847"

# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE207847"

# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE207847.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE207847.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE207847.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"

# Get file paths for SOFT and matrix files
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Create dictionary of unique values for each feature
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print the information
print("Dataset Background Information:")
print(background_info)
print("\nSample Characteristics:")
for feature, values in unique_values_dict.items():
    print(f"\n{feature}:")
    print(values)
# 1. Gene Expression Data Availability
# Based on background info mentioning "gene expression profile using Clariom D platform",
# this dataset contains gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability & 2.2 Conversion Functions

# Trait (loco-regional recurrence time)
trait_row = 3
def convert_trait(val):
    if not isinstance(val, str):
        return None
    val = val.split(': ')[-1].strip().upper()
    if val == 'EARLY':
        return 0  # < 2 years
    elif val == 'INTERMEDIATE': 
        return 0.5  # 2-5 years
    elif val == 'LATE':
        return 1  # > 5 years
    return None

# Age - Not available in characteristics 
age_row = None
convert_age = None

# Gender - Constant value "female" for all samples
gender_row = None  # Although present in row 1, it's constant
convert_gender = None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical))
    
    # Save clinical data
    selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 row IDs
print("First 20 gene/probe IDs:")
print(list(genetic_data.index[:20]))
# The identifiers appear to be using TC (transcript cluster) format from Affymetrix Clariom arrays
# These are not standard gene symbols and will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file_path) 

# Preview column names and first few values
preview = preview_df(gene_metadata)
print("\nGene annotation columns and sample values:")
print(preview)
# Get gene mapping from annotation data
# 'ID' column contains probe IDs matching genetic_data
# 'gene_assignment' contains gene symbols in format "ID // SYMBOL // ..."
prob_col = 'ID'
gene_col = 'gene_assignment'
mapping_data = get_gene_mapping(gene_metadata, prob_col, gene_col)

# Extract valid gene symbols
def extract_gene_symbol(text):
    if not isinstance(text, str):
        return None
    parts = text.split('//')
    if len(parts) >= 2:
        symbol = parts[1].strip()
        # Validate that it looks like a proper gene symbol
        if len(symbol) > 0 and not symbol.startswith('---'):
            return symbol
    return None

# Update mapping before applying
mapping_data['Gene'] = mapping_data['Gene'].apply(extract_gene_symbol)
mapping_data = mapping_data.dropna()

# Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Preview first few gene symbols
print("\nFirst few genes in mapped expression data:")
print(list(gene_data.index[:5]))
# 1. Normalize gene symbols and save gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Judge bias in features and remove biased ones
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and save metadata
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available,
    is_biased=trait_biased,
    df=linked_data,
    note="Sample size adequate. Gene expression data quality good. Trait is early vs late recurrence."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)