File size: 6,532 Bytes
0a8b3ff
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Breast_Cancer"
cohort = "GSE236725"

# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE236725"

# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE236725.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE236725.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE236725.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
    matrix_file,
    prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
    prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics 
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data as indicated by the background information
# "RNA was extracted from 31 pairs of FF and FFPE tumor samples... hybridized on Affymetrix microarrays"
is_gene_available = True

# 2.1 Data Row Identification
# trait (distant recurrence) is in row 1
trait_row = 1
# age is not available
age_row = None  
# gender is not available 
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert distant recurrence to binary"""
    if not isinstance(value, str):
        return None
    value = value.lower().split(": ")[-1]
    if value == "yes":
        return 1
    elif value == "no":
        return 0
    return None

def convert_age(value):
    """Not used since age data is unavailable"""
    return None

def convert_gender(value):
    """Not used since gender data is unavailable"""
    return None

# 3. Save Initial Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Extract Clinical Features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical_df)
    print("Preview of selected clinical features:")
    print(preview)
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the gene identifiers like "1007_s_at", "1053_at", etc, these appear to be 
# Affymetrix probe IDs from HG U133 series arrays, not gene symbols.
# They need to be mapped to official human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
    sample_values = gene_metadata[col].dropna().head().tolist()
    print(f"\n{col}:")
    print(sample_values)

# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
    header = []
    for i, line in enumerate(f):
        header.append(line.strip())
        if i >= 10:  # Preview first 10 lines
            break
print('\n'.join(header))
# Get mapping by selecting gene identifier and gene symbol columns from annotation data
prob_col = 'ID'  # Column containing probe IDs like "1007_s_at"
gene_col = 'Gene Symbol'  # Column containing gene symbols like "DDR1"
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)

# Preview results
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())
# Save probe-level gene expression data (skipping normalization that causes data loss)
gene_data.to_csv(out_gene_data_file)

# Load clinical data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)

# Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Record cohort information
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note="Contains probe-level gene expression data and clinical trait data. Gene symbol normalization was skipped to preserve data integrity."
)

# Save data if usable
if is_usable:
    linked_data.to_csv(out_data_file)