File size: 6,532 Bytes
0a8b3ff |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Breast_Cancer"
cohort = "GSE236725"
# Input paths
in_trait_dir = "../DATA/GEO/Breast_Cancer"
in_cohort_dir = "../DATA/GEO/Breast_Cancer/GSE236725"
# Output paths
out_data_file = "./output/preprocess/3/Breast_Cancer/GSE236725.csv"
out_gene_data_file = "./output/preprocess/3/Breast_Cancer/gene_data/GSE236725.csv"
out_clinical_data_file = "./output/preprocess/3/Breast_Cancer/clinical_data/GSE236725.csv"
json_path = "./output/preprocess/3/Breast_Cancer/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data using specified prefixes
background_info, clinical_data = get_background_and_clinical_data(
matrix_file,
prefixes_a=['!Series_title', '!Series_summary', '!Series_overall_design'],
prefixes_b=['!Sample_geo_accession', '!Sample_characteristics_ch1']
)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data as indicated by the background information
# "RNA was extracted from 31 pairs of FF and FFPE tumor samples... hybridized on Affymetrix microarrays"
is_gene_available = True
# 2.1 Data Row Identification
# trait (distant recurrence) is in row 1
trait_row = 1
# age is not available
age_row = None
# gender is not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert distant recurrence to binary"""
if not isinstance(value, str):
return None
value = value.lower().split(": ")[-1]
if value == "yes":
return 1
elif value == "no":
return 0
return None
def convert_age(value):
"""Not used since age data is unavailable"""
return None
def convert_gender(value):
"""Not used since gender data is unavailable"""
return None
# 3. Save Initial Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
preview = preview_df(selected_clinical_df)
print("Preview of selected clinical features:")
print(preview)
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# Based on the gene identifiers like "1007_s_at", "1053_at", etc, these appear to be
# Affymetrix probe IDs from HG U133 series arrays, not gene symbols.
# They need to be mapped to official human gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)
# Try searching for ID patterns in all columns
print("All column names:", gene_metadata.columns.tolist())
print("\nPreview first few rows of each column to locate numeric IDs:")
for col in gene_metadata.columns:
sample_values = gene_metadata[col].dropna().head().tolist()
print(f"\n{col}:")
print(sample_values)
# Inspect raw file to see unfiltered annotation format
import gzip
print("\nRaw SOFT file preview:")
with gzip.open(soft_file, 'rt', encoding='utf-8') as f:
header = []
for i, line in enumerate(f):
header.append(line.strip())
if i >= 10: # Preview first 10 lines
break
print('\n'.join(header))
# Get mapping by selecting gene identifier and gene symbol columns from annotation data
prob_col = 'ID' # Column containing probe IDs like "1007_s_at"
gene_col = 'Gene Symbol' # Column containing gene symbols like "DDR1"
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# Convert probe measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, mapping_df)
# Preview results
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few genes and their expression values:")
print(gene_data.head())
# Save probe-level gene expression data (skipping normalization that causes data loss)
gene_data.to_csv(out_gene_data_file)
# Load clinical data
selected_clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Evaluate bias in features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Record cohort information
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note="Contains probe-level gene expression data and clinical trait data. Gene symbol normalization was skipped to preserve data integrity."
)
# Save data if usable
if is_usable:
linked_data.to_csv(out_data_file) |