File size: 5,428 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Depression"
cohort = "GSE110298"
# Input paths
in_trait_dir = "../DATA/GEO/Depression"
in_cohort_dir = "../DATA/GEO/Depression/GSE110298"
# Output paths
out_data_file = "./output/preprocess/3/Depression/GSE110298.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE110298.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE110298.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Check gene expression data availability
# Based on the background info, this dataset contains hippocampal gene expression data using microarrays
is_gene_available = True
# 2. Check variables availability and define conversion functions
# 2.1 Identify row numbers for variables
trait_row = 6 # depression data is in row 6
age_row = 2 # age data is in row 2
gender_row = 1 # gender data is in row 1
# 2.2 Define conversion functions
def convert_trait(value):
"""Convert depression score (0-8) to binary (0/1)"""
try:
if ':' in value:
score = int(value.split(':')[1].strip())
# Scores > 0 indicate presence of depression symptoms
return 1 if score > 0 else 0
return None
except:
return None
def convert_age(value):
"""Convert age to continuous value"""
try:
if ':' in value:
age = int(value.split(':')[1].strip())
return age
return None
except:
return None
def convert_gender(value):
"""Convert gender to binary (0=female, 1=male)"""
try:
if ':' in value:
gender = value.split(':')[1].strip().lower()
if 'female' in gender:
return 0
elif 'male' in gender:
return 1
return None
except:
return None
# 3. Save initial metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Based on the ID format (e.g., "1007_s_at"), these look like Affymetrix probe IDs
# which need to be mapped to standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Get mapping from probe IDs to gene symbols
mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_data)
# Preview result
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study of depression in obese patients before and after bariatric surgery"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |