File size: 5,380 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Depression"
cohort = "GSE128387"
# Input paths
in_trait_dir = "../DATA/GEO/Depression"
in_cohort_dir = "../DATA/GEO/Depression/GSE128387"
# Output paths
out_data_file = "./output/preprocess/3/Depression/GSE128387.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE128387.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE128387.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Check gene expression data availability
# From background info, this is a microarray study of gene expression, not miRNA/methylation
is_gene_available = True
# 2.1 Identify data rows
trait_row = 1 # "illness" field indicates depression status
age_row = 2 # "age" field
gender_row = 3 # "Sex" field
# 2.2 Data conversion functions
def convert_trait(value: str) -> int:
"""Convert depression status to binary"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].lower()
if 'major depressive disorder' in value:
return 1
return None
def convert_age(value: str) -> float:
"""Convert age to continuous value"""
if not isinstance(value, str):
return None
try:
age = float(value.split(': ')[-1])
return age
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender to binary (0=female, 1=male)"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].lower()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract clinical features
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save clinical data
print("Clinical data preview:")
print(preview_df(clinical_df))
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The gene identifiers appear to be probe IDs
# (numeric identifiers around 16657xxx) rather than human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Based on observation:
# - Gene expression data has identifiers like '16657436'
# - In annotation data, 'ID' column has the same format identifiers
# - 'gene_assignment' column contains gene symbol info in the format "//GENE_SYMBOL//"
# 2. Extract ID and gene assignments, then get mapping between them
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
# 3. Map probe IDs to gene symbols and convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(gene_data.head().iloc[:, :5])
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study of depression in obese patients before and after bariatric surgery"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |