File size: 9,300 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Depression"
cohort = "GSE201332"

# Input paths
in_trait_dir = "../DATA/GEO/Depression"
in_cohort_dir = "../DATA/GEO/Depression/GSE201332"

# Output paths
out_data_file = "./output/preprocess/3/Depression/GSE201332.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE201332.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE201332.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset contains transcriptional profiling data from whole blood samples
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (Depression) data is in row 1 ("subject status")
trait_row = 1
# Age data is in row 3
age_row = 3  
# Gender data is in row 2
gender_row = 2

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert MDD status to binary: 0 for control, 1 for MDD"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'mdd' in value or 'depression' in value:
        return 1
    elif 'healthy' in value or 'control' in value:
        return 0
    return None

def convert_age(value):
    """Convert age to continuous numeric value"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    # Extract numeric value before 'y'
    try:
        age = int(value.replace('y',''))
        return age
    except:
        return None

def convert_gender(value):
    """Convert gender to binary: 0 for female, 1 for male"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'female' in value:
        return 0
    elif 'male' in value:
        return 1
    return None

# 3. Save Metadata
# Trait data is available (trait_row is not None)
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
clinical_features = geo_select_clinical_features(clinical_data, 
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait,
                                               age_row=age_row,
                                               convert_age=convert_age,
                                               gender_row=gender_row,
                                               convert_gender=convert_gender)

# Preview the extracted features
preview_dict = preview_df(clinical_features)
print("\nPreview of clinical features:")
print(preview_dict)

# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The gene identifiers are simple numeric indices, not human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = pd.read_csv(soft_file, compression='gzip', delimiter='\t', skiprows=163, nrows=54675)

# Filter out control probes and probes without gene info
gene_metadata = gene_metadata[~gene_metadata['Name'].str.contains('Control|control|Corner', na=False)]
gene_metadata = gene_metadata[~gene_metadata['Gene Symbol'].isna()]

# Preview filtered annotation data
print("DataFrame shape after filtering:", gene_metadata.shape)
print("\nColumn names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Extract gene annotation data from SOFT file
def get_probe_gene_mapping(file_path):
    rows = []
    with gzip.open(file_path, 'rt') as f:
        in_spot_section = False
        for line in f:
            line = line.strip()
            
            # Identify start of SPOT section which contains probe mappings
            if line.startswith('!Platform_table_begin'):
                in_spot_section = True
                # Skip the header line
                next(f)
                continue
            elif line.startswith('!Platform_table_end'):
                in_spot_section = False
                continue
                
            if in_spot_section and line:
                fields = line.split('\t')
                # Get probe ID and gene name
                rows.append([fields[0], fields[2]])  # ID and GENE_NAME columns
    
    # Convert to DataFrame
    gene_metadata = pd.DataFrame(rows, columns=['ID', 'Gene'])
    # Filter out empty gene names and control probes
    gene_metadata = gene_metadata[
        (gene_metadata['Gene'].notna()) & 
        (gene_metadata['Gene'] != '') &
        (~gene_metadata['Gene'].str.contains('control|Control|Corner', na=False, regex=True))
    ]
    return gene_metadata

# Extract and preview annotation data
gene_metadata = get_probe_gene_mapping(soft_file)

# Preview filtered annotation data
print("DataFrame shape after filtering:", gene_metadata.shape)
print("\nColumn names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Get gene annotation data from SOFT file using direct extraction
def extract_platform_table(file_path):
    platform_data = []
    with gzip.open(file_path, 'rt') as f:
        in_table = False
        for line in f:
            if line.startswith('!Platform_table_begin'):
                headers = next(f).strip().split('\t')
                in_table = True
                continue
            if line.startswith('!Platform_table_end'):
                break
            if in_table and line.strip():
                platform_data.append(line.strip().split('\t'))
    return pd.DataFrame(platform_data, columns=headers)

# Extract gene metadata
gene_metadata = extract_platform_table(soft_file)

# Print column names
print("Column names in gene_metadata:")
print(gene_metadata.columns)
print("\nPreview of gene metadata:")
print(preview_df(gene_metadata))

# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL') 

# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Preview results
print("\nGene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:")
print(gene_data.index[:10])
print("\nPreview of gene expression values:")
print(gene_data.head().iloc[:, :5])
# 1. Get gene annotation data from SOFT file 
gene_metadata = get_gene_annotation(soft_file)

# Print available columns to identify correct names
print("Available columns:", gene_metadata.columns)

# 2. Get gene mapping dataframe (using correct column names from gene_metadata)
mapping_df = get_gene_mapping(gene_metadata, prob_col='IDs', gene_col='Gene Symbols')

# 3. Convert probe-level data to gene expression data 
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# 4. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 5. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)  
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 6. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 7. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 8. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="MDD vs healthy controls study"
)

# 9. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))