File size: 9,300 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Depression"
cohort = "GSE201332"
# Input paths
in_trait_dir = "../DATA/GEO/Depression"
in_cohort_dir = "../DATA/GEO/Depression/GSE201332"
# Output paths
out_data_file = "./output/preprocess/3/Depression/GSE201332.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE201332.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE201332.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this dataset contains transcriptional profiling data from whole blood samples
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Trait (Depression) data is in row 1 ("subject status")
trait_row = 1
# Age data is in row 3
age_row = 3
# Gender data is in row 2
gender_row = 2
# 2.2 Data Type Conversion Functions
def convert_trait(value):
"""Convert MDD status to binary: 0 for control, 1 for MDD"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'mdd' in value or 'depression' in value:
return 1
elif 'healthy' in value or 'control' in value:
return 0
return None
def convert_age(value):
"""Convert age to continuous numeric value"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
# Extract numeric value before 'y'
try:
age = int(value.replace('y',''))
return age
except:
return None
def convert_gender(value):
"""Convert gender to binary: 0 for female, 1 for male"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'female' in value:
return 0
elif 'male' in value:
return 1
return None
# 3. Save Metadata
# Trait data is available (trait_row is not None)
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
clinical_features = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview_dict = preview_df(clinical_features)
print("\nPreview of clinical features:")
print(preview_dict)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The gene identifiers are simple numeric indices, not human gene symbols
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = pd.read_csv(soft_file, compression='gzip', delimiter='\t', skiprows=163, nrows=54675)
# Filter out control probes and probes without gene info
gene_metadata = gene_metadata[~gene_metadata['Name'].str.contains('Control|control|Corner', na=False)]
gene_metadata = gene_metadata[~gene_metadata['Gene Symbol'].isna()]
# Preview filtered annotation data
print("DataFrame shape after filtering:", gene_metadata.shape)
print("\nColumn names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Extract gene annotation data from SOFT file
def get_probe_gene_mapping(file_path):
rows = []
with gzip.open(file_path, 'rt') as f:
in_spot_section = False
for line in f:
line = line.strip()
# Identify start of SPOT section which contains probe mappings
if line.startswith('!Platform_table_begin'):
in_spot_section = True
# Skip the header line
next(f)
continue
elif line.startswith('!Platform_table_end'):
in_spot_section = False
continue
if in_spot_section and line:
fields = line.split('\t')
# Get probe ID and gene name
rows.append([fields[0], fields[2]]) # ID and GENE_NAME columns
# Convert to DataFrame
gene_metadata = pd.DataFrame(rows, columns=['ID', 'Gene'])
# Filter out empty gene names and control probes
gene_metadata = gene_metadata[
(gene_metadata['Gene'].notna()) &
(gene_metadata['Gene'] != '') &
(~gene_metadata['Gene'].str.contains('control|Control|Corner', na=False, regex=True))
]
return gene_metadata
# Extract and preview annotation data
gene_metadata = get_probe_gene_mapping(soft_file)
# Preview filtered annotation data
print("DataFrame shape after filtering:", gene_metadata.shape)
print("\nColumn names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Get gene annotation data from SOFT file using direct extraction
def extract_platform_table(file_path):
platform_data = []
with gzip.open(file_path, 'rt') as f:
in_table = False
for line in f:
if line.startswith('!Platform_table_begin'):
headers = next(f).strip().split('\t')
in_table = True
continue
if line.startswith('!Platform_table_end'):
break
if in_table and line.strip():
platform_data.append(line.strip().split('\t'))
return pd.DataFrame(platform_data, columns=headers)
# Extract gene metadata
gene_metadata = extract_platform_table(soft_file)
# Print column names
print("Column names in gene_metadata:")
print(gene_metadata.columns)
print("\nPreview of gene metadata:")
print(preview_df(gene_metadata))
# 2. Get gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Preview results
print("\nGene expression data shape:", gene_data.shape)
print("\nFirst few gene symbols:")
print(gene_data.index[:10])
print("\nPreview of gene expression values:")
print(gene_data.head().iloc[:, :5])
# 1. Get gene annotation data from SOFT file
gene_metadata = get_gene_annotation(soft_file)
# Print available columns to identify correct names
print("Available columns:", gene_metadata.columns)
# 2. Get gene mapping dataframe (using correct column names from gene_metadata)
mapping_df = get_gene_mapping(gene_metadata, prob_col='IDs', gene_col='Gene Symbols')
# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# 4. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 5. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 6. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 7. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 8. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="MDD vs healthy controls study"
)
# 9. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata)) |