File size: 5,610 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Depression"
cohort = "GSE81761"

# Input paths
in_trait_dir = "../DATA/GEO/Depression"
in_cohort_dir = "../DATA/GEO/Depression/GSE81761"

# Output paths
out_data_file = "./output/preprocess/3/Depression/GSE81761.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/GSE81761.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/GSE81761.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, this is a gene expression dataset using Affymetrix HG-U133_Plus_2 chip
is_gene_available = True

# 2.1 Data Availability
# Trait (Depression) is not explicitly recorded but PTSD/Depression comorbidity is common in military
# We can infer depression from PTSD subgroup which shows symptom severity changes
trait_row = 2  

# Age and gender data are available
age_row = 5
gender_row = 4

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    """Convert PTSD subgroup to depression severity (binary)"""
    if not value or ':' not in value:
        return None
    value = value.split(': ')[1].strip()
    if value == 'PTSD Not Improved':
        return 1  # Severe depression
    elif value == 'PTSD Improved':
        return 0  # Mild/no depression
    elif value == 'No PTSD':
        return 0  # No depression
    return None  # No Follow Up Data cases

def convert_age(value):
    """Convert age string to integer"""
    if not value or ':' not in value:
        return None
    try:
        return int(value.split(': ')[1])
    except:
        return None

def convert_gender(value):
    """Convert gender to binary (0=female, 1=male)"""
    if not value or ':' not in value:
        return None
    value = value.split(': ')[1].lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# 3. Save Metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=True  # trait_row is not None
)

# 4. Clinical Feature Extraction
clinical_df = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the processed clinical data
preview_result = preview_df(clinical_df)
print("Preview of clinical data:")
print(preview_result)

# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These IDs appear to be Affymetrix probe IDs (e.g. '1007_s_at', '1053_at')
# Rather than human gene symbols, so they will need to be mapped
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify columns: 'ID' for probe IDs and 'Gene Symbol' for gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'

# 2. Get gene mapping dataframe from annotation data
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# 3. Apply gene mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Study of depression in obese patients before and after bariatric surgery"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)