File size: 7,014 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Depression"
# Input paths
tcga_root_dir = "../DATA/TCGA"
# Output paths
out_data_file = "./output/preprocess/3/Depression/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Depression/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Depression/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Depression/cohort_info.json"
depression_related_terms = ["depression", "mental", "psychiatric", "psychological", "mood"]
# Check if any cohort contains depression-related data
found_relevant_data = False
for cohort in cohorts:
cohort_dir = os.path.join(tcga_root_dir, cohort)
try:
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
# Check column names for relevant terms
relevant_cols = [col for col in clinical_df.columns
if any(term in col.lower() for term in depression_related_terms)]
if relevant_cols:
# Check if these columns actually contain meaningful data
non_null_counts = clinical_df[relevant_cols].count()
if (non_null_counts > 0).any():
print(f"\nFound depression-related data in {cohort}:")
print(f"Relevant columns: {relevant_cols}")
found_relevant_data = True
break
except:
continue
# Record result in metadata
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=True, # TCGA always has gene expression data
is_trait_available=found_relevant_data
)
# Define depression-related search terms
depression_related_terms = ["depression", "mental", "psychiatric", "psychological", "mood", "affect"]
# Initialize found_trait_data flag
found_trait_data = False
# Get list of TCGA cohorts
cohorts = [d for d in os.listdir(tcga_root_dir) if os.path.isdir(os.path.join(tcga_root_dir, d))]
# Search through cohorts for depression-related data
for cohort in cohorts:
cohort_dir = os.path.join(tcga_root_dir, cohort)
try:
# Get clinical and genetic file paths
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
# Load clinical data and check column names
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
# Look for depression-related columns
relevant_cols = [col for col in clinical_df.columns
if any(term in col.lower() for term in depression_related_terms)]
if relevant_cols:
# Check if columns contain non-null data
non_null_counts = clinical_df[relevant_cols].count()
if (non_null_counts > 0).any():
print(f"\nFound depression-related data in {cohort}:")
print(f"Relevant columns: {relevant_cols}")
print("\nClinical data columns:")
print(clinical_df.columns.tolist())
found_trait_data = True
break
except Exception as e:
continue
# Record results in metadata
validate_and_save_cohort_info(
is_final=False,
cohort="TCGA",
info_path=json_path,
is_gene_available=True, # TCGA always has gene expression data
is_trait_available=found_trait_data
)
# Define candidate columns based on column names containing age/gender related keywords
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth', 'first_diagnosis_age_asth_ecz_hay_fev_mold_dust', 'first_diagnosis_age_of_animal_insect_allergy', 'first_diagnosis_age_of_food_allergy']
candidate_gender_cols = ['gender']
# Get clinical file path
clinical_file_path, _ = tcga_get_relevant_filepaths(os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)'))
# Read clinical data
clinical_df = pd.read_csv(clinical_file_path, sep='\t', index_col=0)
# Preview age columns
age_preview = {}
for col in candidate_age_cols:
age_preview[col] = clinical_df[col].head().tolist()
print("Age columns preview:")
print(age_preview)
# Preview gender columns
gender_preview = {}
for col in candidate_gender_cols:
gender_preview[col] = clinical_df[col].head().tolist()
print("\nGender columns preview:")
print(gender_preview)
# Select age column by inspecting preview data
# 'age_at_initial_pathologic_diagnosis' has valid age values
age_col = 'age_at_initial_pathologic_diagnosis'
# Select gender column by inspecting preview data
# 'gender' contains valid gender values
gender_col = 'gender'
# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# Define demographic columns discovered in previous steps
age_col = 'age_at_initial_pathologic_diagnosis'
gender_col = 'gender'
# Set up cohort directory and load data
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_lower_grade_glioma_and_glioblastoma_(GBMLGG)')
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
# Extract clinical features using mental_status_changes as depression indicator
clinical_features = tcga_select_clinical_features(
clinical_df,
trait='mental_status_changes', # Use mental status changes as depression indicator
age_col=age_col,
gender_col=gender_col
)
# Save processed clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Normalize gene symbols in genetic data and save
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data = normalize_gene_symbols_in_index(genetic_df)
normalized_gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
linked_data = pd.merge(
clinical_features,
normalized_gene_data.T,
left_index=True,
right_index=True,
how='inner'
)
# Handle missing values
linked_data = handle_missing_values(linked_data, 'mental_status_changes')
# Check if trait or demographic features are biased and remove biased demographics
is_trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'mental_status_changes')
# Final validation and save metadata
notes = "Using TCGA glioma/glioblastoma (GBMLGG) data. Mental status changes used as depression indicator."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort="TCGA",
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_trait_biased,
df=linked_data,
note=notes
)
# Save processed data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |