File size: 5,543 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Duchenne_Muscular_Dystrophy"
cohort = "GSE13608"
# Input paths
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE13608"
# Output paths
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE13608.csv"
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv"
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE13608.csv"
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True # Dataset contains muscle biopsy gene expression data
# 2.1 Data Availability
trait_row = 1 # Disease status in row 1
age_row = 2 # Age in row 2
gender_row = 3 # Gender in row 3
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if not isinstance(value, str):
return None
# Extract value after colon if present
if ':' in value:
value = value.split(':')[1].strip()
if 'Duchenne Muscular Dystrophy' in value:
return 1
elif 'Normal' in value:
return 0
return None
def convert_age(value):
if not isinstance(value, str):
return None
if ':' in value:
value = value.split(':')[1].strip()
if 'age' in value:
try:
age = int(value.replace('age', '').strip())
return age
except:
return None
return None
def convert_gender(value):
if not isinstance(value, str):
return None
if ':' in value:
value = value.split(':')[1].strip()
if 'F' == value.strip():
return 0
elif 'M' == value.strip():
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of selected clinical features:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The identifiers in this dataset appear to be probe IDs from Affymetrix array
# These need to be mapped to standard gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# The gene expression data uses probe IDs stored in the 'ID' column of gene_metadata
# The gene symbols are stored in the 'Gene Symbol' column
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Convert probe-level measurements to gene-level expression
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Preview the mapped gene expression data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |