File size: 7,976 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Duchenne_Muscular_Dystrophy"
cohort = "GSE48828"
# Input paths
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE48828"
# Output paths
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE48828.csv"
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE48828.csv"
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv"
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is an Affymetrix exon array study measuring gene expression
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers for each variable
trait_row = 0 # 'diagnosis' row contains trait info
age_row = 2 # 'age (yrs)' row contains age info
gender_row = 1 # 'gender' row contains gender info
# 2.2 Conversion functions
def convert_trait(value: str) -> Optional[int]:
"""Convert trait status to binary"""
if not value or ':' not in value:
return None
diagnosis = value.split(': ')[1].strip().lower()
if 'duchenne muscular dystrophy' in diagnosis:
return 1
elif 'normal' in diagnosis:
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to float"""
if not value or ':' not in value:
return None
age = value.split(': ')[1].strip().lower()
try:
if age in ['na', 'not available']:
return None
return float(age)
except:
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary"""
if not value or ':' not in value:
return None
gender = value.split(': ')[1].strip().lower()
if gender == 'f':
return 0
elif gender == 'm':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(selected_clinical_df))
# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The row IDs are numerical probe IDs from microarray platforms, not human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify columns for gene identifiers and symbols
# 'ID' column contains same identifiers as gene expression data
# 'gene_assignment' contains gene symbols but needs parsing
# Function to parse gene symbols from complex strings
def parse_gene_symbols(text):
if text == '---' or pd.isna(text):
return None
# Split by /// to handle multiple assignments
gene_entries = text.split('///')
symbols = []
for entry in gene_entries:
parts = entry.strip().split('//')
if len(parts) >= 3: # We need at least 3 parts to get to the gene symbol
symbol = parts[1].strip() # Gene symbol is in the second position
if symbol != '---':
symbols.append(symbol)
return symbols if symbols else None
# Create initial mapping dataframe
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
# Extract gene symbols and clean up mapping
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
# Explode lists of genes into separate rows
mapping_df = mapping_df.explode('Gene')
# Apply gene mapping to probe-level measurements
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Normalize gene symbols to standard form
gene_data = normalize_gene_symbols_in_index(gene_data)
# Print shape and preview mapped data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Since gene_data is empty, we need to remap gene symbols
def parse_gene_symbols(text):
if text == '---' or pd.isna(text):
return None
# Split entries by /// for multiple assignments
entries = text.split('///')
symbols = []
for entry in entries:
parts = [p.strip() for p in entry.split('//')]
if len(parts) >= 2: # Need at least 2 parts
symbol = parts[1] # Second part contains the gene symbol
if symbol != '---':
symbols.append(symbol)
return symbols if symbols else None
# Create initial mapping dataframe
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()
# Extract gene symbols and clean up mapping
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])
# Explode lists of genes into separate rows
mapping_df = mapping_df.explode('Gene')
print(f"Number of probe-gene mappings: {len(mapping_df)}")
# Apply gene mapping to probe-level measurements
gene_data = apply_gene_mapping(genetic_df, mapping_df)
print(f"Number of genes after mapping: {len(gene_data)}")
# After remapping, proceed with the rest of step 7
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
print(f"Number of genes after normalization: {len(gene_data)}")
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |