File size: 7,976 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Duchenne_Muscular_Dystrophy"
cohort = "GSE48828"

# Input paths
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE48828"

# Output paths
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE48828.csv"
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE48828.csv"
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE48828.csv"
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is an Affymetrix exon array study measuring gene expression
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers for each variable
trait_row = 0  # 'diagnosis' row contains trait info
age_row = 2    # 'age (yrs)' row contains age info 
gender_row = 1 # 'gender' row contains gender info

# 2.2 Conversion functions
def convert_trait(value: str) -> Optional[int]:
    """Convert trait status to binary"""
    if not value or ':' not in value:
        return None
    diagnosis = value.split(': ')[1].strip().lower()
    if 'duchenne muscular dystrophy' in diagnosis:
        return 1
    elif 'normal' in diagnosis:
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age to float"""
    if not value or ':' not in value:
        return None
    age = value.split(': ')[1].strip().lower()
    try:
        if age in ['na', 'not available']:
            return None
        return float(age)
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary"""
    if not value or ':' not in value:
        return None
    gender = value.split(': ')[1].strip().lower()
    if gender == 'f':
        return 0
    elif gender == 'm':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the processed clinical data
    print("Preview of processed clinical data:")
    print(preview_df(selected_clinical_df))
    
    # Save to CSV
    selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The row IDs are numerical probe IDs from microarray platforms, not human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify columns for gene identifiers and symbols
# 'ID' column contains same identifiers as gene expression data
# 'gene_assignment' contains gene symbols but needs parsing

# Function to parse gene symbols from complex strings
def parse_gene_symbols(text):
    if text == '---' or pd.isna(text):
        return None
    # Split by /// to handle multiple assignments
    gene_entries = text.split('///')
    symbols = []
    for entry in gene_entries:
        parts = entry.strip().split('//')
        if len(parts) >= 3:  # We need at least 3 parts to get to the gene symbol
            symbol = parts[1].strip()  # Gene symbol is in the second position
            if symbol != '---':
                symbols.append(symbol)
    return symbols if symbols else None

# Create initial mapping dataframe
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()

# Extract gene symbols and clean up mapping
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])

# Explode lists of genes into separate rows
mapping_df = mapping_df.explode('Gene')

# Apply gene mapping to probe-level measurements
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Normalize gene symbols to standard form
gene_data = normalize_gene_symbols_in_index(gene_data)

# Print shape and preview mapped data
print("Gene expression data shape after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Since gene_data is empty, we need to remap gene symbols
def parse_gene_symbols(text):
    if text == '---' or pd.isna(text):
        return None
    # Split entries by /// for multiple assignments
    entries = text.split('///')
    symbols = []
    for entry in entries:
        parts = [p.strip() for p in entry.split('//')]
        if len(parts) >= 2:  # Need at least 2 parts
            symbol = parts[1]  # Second part contains the gene symbol
            if symbol != '---':
                symbols.append(symbol)
    return symbols if symbols else None

# Create initial mapping dataframe
mapping_df = gene_metadata[['ID', 'gene_assignment']].copy()

# Extract gene symbols and clean up mapping
mapping_df['Gene'] = mapping_df['gene_assignment'].apply(parse_gene_symbols)
mapping_df = mapping_df[['ID', 'Gene']].dropna(subset=['Gene'])

# Explode lists of genes into separate rows
mapping_df = mapping_df.explode('Gene')
print(f"Number of probe-gene mappings: {len(mapping_df)}")

# Apply gene mapping to probe-level measurements
gene_data = apply_gene_mapping(genetic_df, mapping_df)
print(f"Number of genes after mapping: {len(gene_data)}")

# After remapping, proceed with the rest of step 7
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
print(f"Number of genes after normalization: {len(gene_data)}")
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)