File size: 5,621 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Duchenne_Muscular_Dystrophy"
cohort = "GSE79263"
# Input paths
in_trait_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy"
in_cohort_dir = "../DATA/GEO/Duchenne_Muscular_Dystrophy/GSE79263"
# Output paths
out_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/GSE79263.csv"
out_gene_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv"
out_clinical_data_file = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/clinical_data/GSE79263.csv"
json_path = "./output/preprocess/3/Duchenne_Muscular_Dystrophy/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info indicating RNA extraction and gene expression profiling
is_gene_available = True
# 2.1 Data Availability and Row Identification
# Trait (DMD status) found in row 2 "disease state"
trait_row = 2
# Age found in row 4
age_row = 4
# Gender data not available in sample characteristics
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert DMD status to binary"""
if pd.isna(value):
return None
value = value.split(": ")[-1].lower()
if "duchenne" in value or "dmd" in value:
return 1
elif "healthy" in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age to continuous numeric value"""
if pd.isna(value):
return None
value = value.split(": ")[-1].lower()
if "unknown" in value:
return None
try:
# Extract numeric value before 'y'
age = float(value.replace('y',''))
return age
except:
return None
def convert_gender(value: str) -> int:
"""Placeholder function - not used since gender data unavailable"""
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the selected features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These IDs start with "ILMN_" which indicates they are Illumina probe IDs, not gene symbols
# Therefore they need to be mapped to human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Get gene mapping using ID and Symbol columns from annotation
# ID column contains ILMN probe IDs matching gene expression data
# Symbol column contains human gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Symbol')
# 2. Apply gene mapping to convert probe-level expression to gene-level expression
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print gene_data shape and preview
print("\nGene expression data shape after mapping:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |