File size: 5,564 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Eczema"
cohort = "GSE120899"
# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE120899"
# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE120899.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE120899.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE120899.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Analysis
# Yes, this appears to be gene expression data from skin biopsies, not miRNA/methylation
is_gene_available = True
# 2.1 Data Row Identification
# Trait can be inferred from tissue type in row 1 (lesional vs non-lesional/normal skin)
trait_row = 1
# Age and gender not available in characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert tissue type to binary trait status
lesional skin = 1 (has eczema)
non-lesional/normal = 0 (no eczema)"""
if pd.isna(value) or ":" not in value:
return None
value = value.split(":")[1].strip().lower()
if "lesional skin" in value:
return 1
elif "non-lesional skin" in value or "normal" in value:
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Placeholder - age data not available"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Placeholder - gender data not available"""
return None
# 3. Save Initial Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract Clinical Features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview extracted features
preview = preview_df(clinical_features)
print("Preview of extracted clinical features:")
print(preview)
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The identifiers in the data follow the format of Affymetrix probe IDs (eg. "1007_s_at") rather than gene symbols
# These need to be mapped to corresponding gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify relevant columns for mapping:
# 'ID' column in annotation matches probe IDs in expression data
# 'Gene Symbol' column contains the target gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Get probe-to-gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# 3. Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print shape and preview of mapped gene data
print("\nMapped gene expression data shape:", gene_data.shape)
print("\nPreview of first few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |