File size: 5,564 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Eczema"
cohort = "GSE120899"

# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE120899"

# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE120899.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE120899.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE120899.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Analysis
# Yes, this appears to be gene expression data from skin biopsies, not miRNA/methylation
is_gene_available = True

# 2.1 Data Row Identification
# Trait can be inferred from tissue type in row 1 (lesional vs non-lesional/normal skin)
trait_row = 1
# Age and gender not available in characteristics
age_row = None  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert tissue type to binary trait status
    lesional skin = 1 (has eczema)
    non-lesional/normal = 0 (no eczema)"""
    if pd.isna(value) or ":" not in value:
        return None
    value = value.split(":")[1].strip().lower()
    if "lesional skin" in value:
        return 1
    elif "non-lesional skin" in value or "normal" in value:
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Placeholder - age data not available"""
    return None

def convert_gender(value: str) -> Optional[int]:
    """Placeholder - gender data not available"""
    return None

# 3. Save Initial Metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract Clinical Features 
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview extracted features
    preview = preview_df(clinical_features)
    print("Preview of extracted clinical features:")
    print(preview)
    
    # Save to CSV
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The identifiers in the data follow the format of Affymetrix probe IDs (eg. "1007_s_at") rather than gene symbols
# These need to be mapped to corresponding gene symbols for proper analysis
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Identify relevant columns for mapping:
# 'ID' column in annotation matches probe IDs in expression data
# 'Gene Symbol' column contains the target gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'

# 2. Get probe-to-gene mapping dataframe
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)

# 3. Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Print shape and preview of mapped gene data
print("\nMapped gene expression data shape:", gene_data.shape)
print("\nPreview of first few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)