File size: 11,965 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Eczema"
cohort = "GSE123086"

# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE123086"

# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE123086.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123086.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123086.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is a microarray gene expression study
is_gene_available = True

# 2. Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    # Extract value after colon and convert to binary
    value = x.split(": ")[1].strip()
    if value == "ATOPIC_ECZEMA":
        return 1
    elif value == "HEALTHY_CONTROL":
        return 0
    return None

def convert_age(x):
    if pd.isna(x):
        return None
    try:
        # Extract numeric age value after colon
        age = int(x.split(": ")[1])
        return age
    except:
        return None

def convert_gender(x):
    if pd.isna(x):
        return None
    # Extract value after colon and convert to binary
    value = x.split(": ")[1].strip()
    if value.upper() == "FEMALE":
        return 0
    elif value.upper() == "MALE":
        return 1
    return None

# Find data rows in sample characteristics
trait_row = 1  # Primary diagnosis in row 1
age_row = 3    # Age appears in rows 3 and 4, but row 3 has more entries
gender_row = 2  # Sex information in row 2

# 3. Save metadata for initial filtering
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract clinical features
clinical_df = pd.DataFrame(clinical_data)
selected_clinical_df = geo_select_clinical_features(
    clinical_df,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age, 
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview and save clinical data
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Examine gene identifiers - these appear to be numbers rather than standard gene symbols
# Numbers indicate probe or probe set IDs from a microarray platform
# Will need to be mapped to gene symbols
requires_gene_mapping = True
# Extract probe IDs and gene name mapping from SOFT file
gene_metadata = get_gene_annotation(soft_file)

# Print field information to check available gene identifiers
print("Sample of probe ID field:")
print(gene_metadata['ID'].head())
print("\nAll column names:")
print(list(gene_metadata.columns))
print("\nSample of gene metadata rows:")
pd.set_option('display.max_columns', None)
print(gene_metadata.head())
# Looking at the gene metadata, let's try to extract more information from the SOFT file
# Extract probe IDs and gene name mapping from SOFT file again, but this time don't filter out comment lines
gene_metadata = pd.read_csv(soft_file, compression='gzip', sep='\t', comment=None, on_bad_lines='skip')

# Get relevant columns for mapping
id_col = [col for col in gene_metadata.columns if 'ID_REF' in col or 'ID' in col][0]
gene_col = [col for col in gene_metadata.columns if 'GENE_SYMBOL' in col][0]

# Create mapping dataframe
mapping_df = gene_metadata[[id_col, gene_col]].copy()
mapping_df.columns = ['ID', 'Gene']  
mapping_df = mapping_df.dropna()

# Apply the mapping to convert probe-level data to gene-level data 
gene_data = apply_gene_mapping(genetic_df, mapping_df)

print("Gene data shape after mapping:", gene_data.shape)
print("\nPreview of first few genes and samples:")
print(gene_data.head().iloc[:, :5])

# Save the gene expression data 
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation data using the library function
gene_metadata = get_gene_annotation(soft_file)

# Get column with ENTREZ_GENE_IDs to map to NCBI gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'ENTREZ_GENE_ID') 

# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

print("Gene data shape after mapping:", gene_data.shape)
print("\nPreview of first few genes and samples:")
print(gene_data.head().iloc[:, :5])

# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Skip gene symbol normalization since we have no valid gene data
gene_data = pd.read_csv(out_gene_data_file, index_col=0)

if len(gene_data) == 0:
    # Load clinical data for validation
    clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
    # Check for biased features in clinical data
    trait_biased, clinical_df = judge_and_remove_biased_features(clinical_df, trait)
    
    validate_and_save_cohort_info(
        is_final=True, 
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,  # Genes exist but mapping failed
        is_trait_available=True,
        is_biased=trait_biased,
        df=clinical_df,
        note="Gene mapping failed - no valid gene expression data produced"
    )
else:
    # Original processing steps
    gene_data = normalize_gene_symbols_in_index(gene_data)
    os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
    gene_data.to_csv(out_gene_data_file)

    # Link clinical and genetic data
    clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
    linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

    # Handle missing values
    linked_data = handle_missing_values(linked_data, trait)

    # Check for biased features
    trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

    # Final validation
    is_usable = validate_and_save_cohort_info(
        is_final=True, 
        cohort=cohort,
        info_path=json_path,
        is_gene_available=True,
        is_trait_available=True,
        is_biased=trait_biased,
        df=linked_data,
        note="Study comparing Eczema patient vs healthy control gene expression in CD4+ T cells"
    )

    # Save linked data if usable 
    if is_usable:
        os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
        linked_data.to_csv(out_data_file)
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the series description mentioning gene expression microarray analysis, RNA extraction,
# and Agilent microarray processing, this dataset contains gene expression data
is_gene_available = True

# 2.1 Data Availability
# Trait (primary diagnosis) is in row 1
trait_row = 1

# Gender is in row 3 (and partly in row 2)
gender_row = 3  

# Age appears in rows 3 and 4
age_row = 3

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait values to binary (0: control, 1: case)"""
    if not isinstance(value, str):
        return None
    value = value.split(': ')[-1].strip().upper()
    if "ATOPIC_ECZEMA" in value:
        return 1
    elif "HEALTHY_CONTROL" in value:
        return 0
    return None

def convert_age(value: str) -> float:
    """Convert age values to continuous numbers"""
    if not isinstance(value, str) or not value.startswith('age: '):
        return None
    try:
        return float(value.split(': ')[1])
    except:
        return None

def convert_gender(value: str) -> int:
    """Convert gender values to binary (0: female, 1: male)"""
    if not isinstance(value, str) or not value.startswith('Sex: '):
        return None
    value = value.split(': ')[1].strip().upper()
    if value == 'FEMALE':
        return 0
    elif value == 'MALE':
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Extract Clinical Features
selected_clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview and save clinical data
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# Based on the preview data, we can see this dataset has trait data (0s and 1s), age data (numeric age values), and gender data (0s and 1s)
is_gene_available = True  # This is a GEO dataset so likely contains gene expression data

# Define conversion functions
def convert_trait(value):
    if pd.isna(value):
        return None
    try:
        val = float(value.split(":")[-1].strip() if ":" in value else value)
        return val  # Already binary (0/1) format 
    except:
        return None

def convert_age(value):
    if pd.isna(value):
        return None
    try:
        val = float(value.split(":")[-1].strip() if ":" in value else value)
        return val
    except:
        return None

def convert_gender(value): 
    if pd.isna(value):
        return None
    try:
        val = float(value.split(":")[-1].strip() if ":" in value else value)
        return val  # Already in binary format where 1=male, 0=female
    except:
        return None

# Identify row indices for each variable based on the data preview
trait_row = 0 
age_row = 1
gender_row = 2

# Initial filtering and save metadata
validate_and_save_cohort_info(is_final=False,
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=trait_row is not None)

# Extract clinical features since trait data is available
if trait_row is not None:
    selected_clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age, 
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("\nPreview of extracted clinical features:")
    print(preview_df(selected_clinical_df))
    
    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)