File size: 11,965 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Eczema"
cohort = "GSE123086"
# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE123086"
# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE123086.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123086.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123086.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info, this is a microarray gene expression study
is_gene_available = True
# 2. Data Type Conversion Functions
def convert_trait(x):
if pd.isna(x):
return None
# Extract value after colon and convert to binary
value = x.split(": ")[1].strip()
if value == "ATOPIC_ECZEMA":
return 1
elif value == "HEALTHY_CONTROL":
return 0
return None
def convert_age(x):
if pd.isna(x):
return None
try:
# Extract numeric age value after colon
age = int(x.split(": ")[1])
return age
except:
return None
def convert_gender(x):
if pd.isna(x):
return None
# Extract value after colon and convert to binary
value = x.split(": ")[1].strip()
if value.upper() == "FEMALE":
return 0
elif value.upper() == "MALE":
return 1
return None
# Find data rows in sample characteristics
trait_row = 1 # Primary diagnosis in row 1
age_row = 3 # Age appears in rows 3 and 4, but row 3 has more entries
gender_row = 2 # Sex information in row 2
# 3. Save metadata for initial filtering
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
clinical_df = pd.DataFrame(clinical_data)
selected_clinical_df = geo_select_clinical_features(
clinical_df,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save clinical data
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Examine gene identifiers - these appear to be numbers rather than standard gene symbols
# Numbers indicate probe or probe set IDs from a microarray platform
# Will need to be mapped to gene symbols
requires_gene_mapping = True
# Extract probe IDs and gene name mapping from SOFT file
gene_metadata = get_gene_annotation(soft_file)
# Print field information to check available gene identifiers
print("Sample of probe ID field:")
print(gene_metadata['ID'].head())
print("\nAll column names:")
print(list(gene_metadata.columns))
print("\nSample of gene metadata rows:")
pd.set_option('display.max_columns', None)
print(gene_metadata.head())
# Looking at the gene metadata, let's try to extract more information from the SOFT file
# Extract probe IDs and gene name mapping from SOFT file again, but this time don't filter out comment lines
gene_metadata = pd.read_csv(soft_file, compression='gzip', sep='\t', comment=None, on_bad_lines='skip')
# Get relevant columns for mapping
id_col = [col for col in gene_metadata.columns if 'ID_REF' in col or 'ID' in col][0]
gene_col = [col for col in gene_metadata.columns if 'GENE_SYMBOL' in col][0]
# Create mapping dataframe
mapping_df = gene_metadata[[id_col, gene_col]].copy()
mapping_df.columns = ['ID', 'Gene']
mapping_df = mapping_df.dropna()
# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
print("Gene data shape after mapping:", gene_data.shape)
print("\nPreview of first few genes and samples:")
print(gene_data.head().iloc[:, :5])
# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Extract gene annotation data using the library function
gene_metadata = get_gene_annotation(soft_file)
# Get column with ENTREZ_GENE_IDs to map to NCBI gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'ENTREZ_GENE_ID')
# Apply the mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
print("Gene data shape after mapping:", gene_data.shape)
print("\nPreview of first few genes and samples:")
print(gene_data.head().iloc[:, :5])
# Save the gene expression data
gene_data.to_csv(out_gene_data_file)
# Skip gene symbol normalization since we have no valid gene data
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
if len(gene_data) == 0:
# Load clinical data for validation
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Check for biased features in clinical data
trait_biased, clinical_df = judge_and_remove_biased_features(clinical_df, trait)
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True, # Genes exist but mapping failed
is_trait_available=True,
is_biased=trait_biased,
df=clinical_df,
note="Gene mapping failed - no valid gene expression data produced"
)
else:
# Original processing steps
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Final validation
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing Eczema patient vs healthy control gene expression in CD4+ T cells"
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the series description mentioning gene expression microarray analysis, RNA extraction,
# and Agilent microarray processing, this dataset contains gene expression data
is_gene_available = True
# 2.1 Data Availability
# Trait (primary diagnosis) is in row 1
trait_row = 1
# Gender is in row 3 (and partly in row 2)
gender_row = 3
# Age appears in rows 3 and 4
age_row = 3
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert trait values to binary (0: control, 1: case)"""
if not isinstance(value, str):
return None
value = value.split(': ')[-1].strip().upper()
if "ATOPIC_ECZEMA" in value:
return 1
elif "HEALTHY_CONTROL" in value:
return 0
return None
def convert_age(value: str) -> float:
"""Convert age values to continuous numbers"""
if not isinstance(value, str) or not value.startswith('age: '):
return None
try:
return float(value.split(': ')[1])
except:
return None
def convert_gender(value: str) -> int:
"""Convert gender values to binary (0: female, 1: male)"""
if not isinstance(value, str) or not value.startswith('Sex: '):
return None
value = value.split(': ')[1].strip().upper()
if value == 'FEMALE':
return 0
elif value == 'MALE':
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract Clinical Features
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview and save clinical data
print("Preview of extracted clinical features:")
print(preview_df(selected_clinical_df))
selected_clinical_df.to_csv(out_clinical_data_file)
# Based on the preview data, we can see this dataset has trait data (0s and 1s), age data (numeric age values), and gender data (0s and 1s)
is_gene_available = True # This is a GEO dataset so likely contains gene expression data
# Define conversion functions
def convert_trait(value):
if pd.isna(value):
return None
try:
val = float(value.split(":")[-1].strip() if ":" in value else value)
return val # Already binary (0/1) format
except:
return None
def convert_age(value):
if pd.isna(value):
return None
try:
val = float(value.split(":")[-1].strip() if ":" in value else value)
return val
except:
return None
def convert_gender(value):
if pd.isna(value):
return None
try:
val = float(value.split(":")[-1].strip() if ":" in value else value)
return val # Already in binary format where 1=male, 0=female
except:
return None
# Identify row indices for each variable based on the data preview
trait_row = 0
age_row = 1
gender_row = 2
# Initial filtering and save metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# Extract clinical features since trait data is available
if trait_row is not None:
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("\nPreview of extracted clinical features:")
print(preview_df(selected_clinical_df))
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file) |