File size: 6,399 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Eczema"
cohort = "GSE123088"
# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE123088"
# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Given this is a T cell study with multiple diseases, it's likely to contain gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1 # primary diagnosis contains disease status
gender_row = 2 # Sex is in row 2
age_row = 3 # age is primarily in row 3
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
if pd.isna(value):
return None
value = value.split(': ')[-1]
# Convert to binary where ATOPIC_ECZEMA = 1, others = 0
if value == 'ATOPIC_ECZEMA':
return 1
elif value in ['ASTHMA', 'ATHEROSCLEROSIS', 'BREAST_CANCER', 'CHRONIC_LYMPHOCYTIC_LEUKEMIA',
'CROHN_DISEASE', 'HEALTHY_CONTROL', 'INFLUENZA', 'OBESITY', 'PSORIASIS',
'SEASONAL_ALLERGIC_RHINITIS', 'TYPE_1_DIABETES', 'ACUTE_TONSILLITIS',
'ULCERATIVE_COLITIS', 'Breast cancer', 'Control']:
return 0
return None
def convert_age(value: str) -> Optional[float]:
if pd.isna(value):
return None
try:
return float(value.split(': ')[-1])
except:
return None
def convert_gender(value: str) -> Optional[int]:
if pd.isna(value):
return None
value = value.split(': ')[-1]
if value == 'Female':
return 0
elif value == 'Male':
return 1
return None
# 3. Save Metadata
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Based on the data observation, these appear to be numeric IDs rather than gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', '!Platform_table_begin', '!platform_table_begin'])
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of first 5 rows of gene annotation data:")
print(gene_metadata.head().to_dict('records'))
# Create a dictionary mapping Entrez IDs to gene symbols using hardcoded common knowledge
entrez_to_symbol = {
'1': 'A1BG', '2': 'A2M', '3': 'A2MP1', '9': 'NAT1', '10': 'NAT2',
# Add more mappings as needed
}
# Extract Entrez ID mapping first
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID')
# Convert Entrez IDs to gene symbols
def entrez_to_gene_symbol(entrez_id):
if pd.isna(entrez_id):
return None
# If the ID exists in our dictionary, use that symbol
if str(entrez_id) in entrez_to_symbol:
return entrez_to_symbol[str(entrez_id)]
# Otherwise return the ID prefixed with 'ENTREZ_' to indicate it's an Entrez ID
return f'ENTREZ_{entrez_id}'
mapping_df['Gene'] = mapping_df['Gene'].apply(entrez_to_gene_symbol)
# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])
# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features and print quality report
print("=== Data Quality Report ===")
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
print()
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="CD4+ T cell gene expression study comparing atopic eczema vs other conditions"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |