File size: 6,399 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Eczema"
cohort = "GSE123088"

# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE123088"

# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE123088.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE123088.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE123088.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Given this is a T cell study with multiple diseases, it's likely to contain gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 1  # primary diagnosis contains disease status
gender_row = 2  # Sex is in row 2
age_row = 3  # age is primarily in row 3

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    if pd.isna(value):
        return None
    value = value.split(': ')[-1]
    # Convert to binary where ATOPIC_ECZEMA = 1, others = 0
    if value == 'ATOPIC_ECZEMA':
        return 1
    elif value in ['ASTHMA', 'ATHEROSCLEROSIS', 'BREAST_CANCER', 'CHRONIC_LYMPHOCYTIC_LEUKEMIA', 
                   'CROHN_DISEASE', 'HEALTHY_CONTROL', 'INFLUENZA', 'OBESITY', 'PSORIASIS',
                   'SEASONAL_ALLERGIC_RHINITIS', 'TYPE_1_DIABETES', 'ACUTE_TONSILLITIS',
                   'ULCERATIVE_COLITIS', 'Breast cancer', 'Control']:
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    if pd.isna(value):
        return None
    try:
        return float(value.split(': ')[-1])
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    if pd.isna(value):
        return None
    value = value.split(': ')[-1]
    if value == 'Female':
        return 0
    elif value == 'Male':
        return 1
    return None

# 3. Save Metadata
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Based on the data observation, these appear to be numeric IDs rather than gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file, prefixes=['^', '!', '#', '!Platform_table_begin', '!platform_table_begin']) 

print("Column names:")
print(gene_metadata.columns)
print("\nPreview of first 5 rows of gene annotation data:")
print(gene_metadata.head().to_dict('records'))
# Create a dictionary mapping Entrez IDs to gene symbols using hardcoded common knowledge
entrez_to_symbol = {
    '1': 'A1BG', '2': 'A2M', '3': 'A2MP1', '9': 'NAT1', '10': 'NAT2',
    # Add more mappings as needed
}

# Extract Entrez ID mapping first 
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='ENTREZ_GENE_ID')

# Convert Entrez IDs to gene symbols
def entrez_to_gene_symbol(entrez_id):
    if pd.isna(entrez_id):
        return None
    # If the ID exists in our dictionary, use that symbol
    if str(entrez_id) in entrez_to_symbol:
        return entrez_to_symbol[str(entrez_id)]
    # Otherwise return the ID prefixed with 'ENTREZ_' to indicate it's an Entrez ID
    return f'ENTREZ_{entrez_id}'

mapping_df['Gene'] = mapping_df['Gene'].apply(entrez_to_gene_symbol)

# Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns:")
print(gene_data.head().iloc[:, :5])

# Save gene expression data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features and print quality report
print("=== Data Quality Report ===")
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
print()

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="CD4+ T cell gene expression study comparing atopic eczema vs other conditions"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)