File size: 7,154 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Eczema"
cohort = "GSE150797"

# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE150797"

# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE150797.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE150797.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE150797.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, microarray data (Affymetrix) is available according to background info
is_gene_available = True

# 2. Variable Availability and Type Conversion 
trait_row = 2  # treatment status indicates disease severity
age_row = None  # age not provided
gender_row = 1  # gender is available

def convert_trait(value: str) -> Optional[int]:
    """Convert treatment status to disease severity binary"""
    if not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower().strip()
    if "untreated" in value:
        return 1  # Active disease
    elif "treated" in value or "nb-uvb" in value:
        return 0  # Treated/controlled disease
    return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary (0=female, 1=male)"""
    if not isinstance(value, str):
        return None
    value = value.split(": ")[-1].lower().strip()
    if value == "female":
        return 0
    elif value == "male":
        return 1
    return None

# 3. Save Initial Metadata
is_usable = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_df = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_df)
    
    # Save clinical data
    os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These identifiers appear to be Affymetrix probeset IDs (TC identifiers followed by .hg.1)
# They need to be mapped to standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)

# Function to extract gene symbol from the text description
def extract_gene_symbol(text):
    if not isinstance(text, str):
        return None
        
    # Look for RefSeq gene name
    refseq_match = re.search(r'RefSeq // Homo sapiens ([\w\-]+) \(', text)
    if refseq_match:
        return refseq_match.group(1)
        
    # Look for ENSEMBL gene name
    ensembl_match = re.search(r'ENSEMBL // ([\w\-]+) \[', text)
    if ensembl_match:
        return ensembl_match.group(1)
        
    # Look for gene name with HGNC Symbol
    hgnc_match = re.search(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\] // ([\w\-]+)', text)
    if hgnc_match:
        return hgnc_match.group(1)
        
    return None

# Add gene symbol column and create mapping dataframe
gene_metadata['Gene_Symbol'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbol)
gene_mapping = gene_metadata[['ID', 'Gene_Symbol']].dropna()
gene_mapping = gene_mapping.rename(columns={'Gene_Symbol': 'Gene'})

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene mapping data:")
print(preview_df(gene_mapping))

# Print mapping statistics
n_total = len(gene_metadata)
n_mapped = len(gene_mapping)
print(f"\nTotal probes: {n_total}")
print(f"Probes mapped to gene symbols: {n_mapped} ({n_mapped/n_total:.1%})")
# Based on the preview, refine the gene mapping strategy
# Extract probes from SOFT file annotations with better gene symbol extraction
gene_metadata = get_gene_annotation(soft_file)

def extract_gene_symbol(text):
    if not isinstance(text, str):
        return None
        
    # Look for RefSeq gene name
    refseq_match = re.search(r'RefSeq.*?//(.*?)\[', text)
    if refseq_match:
        symbol = refseq_match.group(1).strip()
        if not symbol.startswith(('LOC', 'LINC')):
            return symbol
            
    # Look for HGNC Symbol
    hgnc_match = re.search(r'HGNC.*?//(.*?)\[', text)
    if hgnc_match:
        return hgnc_match.group(1).strip()
        
    return None

# Create mapping dataframe with probe IDs and gene symbols
gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbol)
mapping_df = gene_metadata[['ID', 'Gene']].dropna()

# Apply gene mapping to convert probe-level data to gene-level expression
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Preview the results
print("Gene mapping statistics:")
print(f"Total probes: {len(genetic_df)}")
print(f"Probes mapped to genes: {len(mapping_df)}")
print(f"Final unique genes: {len(gene_data)}")
print("\nPreview of gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)