File size: 7,154 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Eczema"
cohort = "GSE150797"
# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE150797"
# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE150797.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE150797.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE150797.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Yes, microarray data (Affymetrix) is available according to background info
is_gene_available = True
# 2. Variable Availability and Type Conversion
trait_row = 2 # treatment status indicates disease severity
age_row = None # age not provided
gender_row = 1 # gender is available
def convert_trait(value: str) -> Optional[int]:
"""Convert treatment status to disease severity binary"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].lower().strip()
if "untreated" in value:
return 1 # Active disease
elif "treated" in value or "nb-uvb" in value:
return 0 # Treated/controlled disease
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary (0=female, 1=male)"""
if not isinstance(value, str):
return None
value = value.split(": ")[-1].lower().strip()
if value == "female":
return 0
elif value == "male":
return 1
return None
# 3. Save Initial Metadata
is_usable = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None
)
# 4. Extract Clinical Features
if trait_row is not None:
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_df)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These identifiers appear to be Affymetrix probeset IDs (TC identifiers followed by .hg.1)
# They need to be mapped to standard human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Function to extract gene symbol from the text description
def extract_gene_symbol(text):
if not isinstance(text, str):
return None
# Look for RefSeq gene name
refseq_match = re.search(r'RefSeq // Homo sapiens ([\w\-]+) \(', text)
if refseq_match:
return refseq_match.group(1)
# Look for ENSEMBL gene name
ensembl_match = re.search(r'ENSEMBL // ([\w\-]+) \[', text)
if ensembl_match:
return ensembl_match.group(1)
# Look for gene name with HGNC Symbol
hgnc_match = re.search(r'\[Source:HGNC Symbol;Acc:HGNC:\d+\] // ([\w\-]+)', text)
if hgnc_match:
return hgnc_match.group(1)
return None
# Add gene symbol column and create mapping dataframe
gene_metadata['Gene_Symbol'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbol)
gene_mapping = gene_metadata[['ID', 'Gene_Symbol']].dropna()
gene_mapping = gene_mapping.rename(columns={'Gene_Symbol': 'Gene'})
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene mapping data:")
print(preview_df(gene_mapping))
# Print mapping statistics
n_total = len(gene_metadata)
n_mapped = len(gene_mapping)
print(f"\nTotal probes: {n_total}")
print(f"Probes mapped to gene symbols: {n_mapped} ({n_mapped/n_total:.1%})")
# Based on the preview, refine the gene mapping strategy
# Extract probes from SOFT file annotations with better gene symbol extraction
gene_metadata = get_gene_annotation(soft_file)
def extract_gene_symbol(text):
if not isinstance(text, str):
return None
# Look for RefSeq gene name
refseq_match = re.search(r'RefSeq.*?//(.*?)\[', text)
if refseq_match:
symbol = refseq_match.group(1).strip()
if not symbol.startswith(('LOC', 'LINC')):
return symbol
# Look for HGNC Symbol
hgnc_match = re.search(r'HGNC.*?//(.*?)\[', text)
if hgnc_match:
return hgnc_match.group(1).strip()
return None
# Create mapping dataframe with probe IDs and gene symbols
gene_metadata['Gene'] = gene_metadata['SPOT_ID.1'].apply(extract_gene_symbol)
mapping_df = gene_metadata[['ID', 'Gene']].dropna()
# Apply gene mapping to convert probe-level data to gene-level expression
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Preview the results
print("Gene mapping statistics:")
print(f"Total probes: {len(genetic_df)}")
print(f"Probes mapped to genes: {len(mapping_df)}")
print(f"Final unique genes: {len(gene_data)}")
print("\nPreview of gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |