File size: 5,527 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Eczema"
cohort = "GSE57225"
# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE57225"
# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE57225.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE57225.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE57225.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on Series_title and overall_design, it mentions "genome expression arrays",
# indicating gene expression data is available
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Disease state is in row 1, can infer eczema status
trait_row = 1
# Age data available in row 4
age_row = 4
# Gender data available in row 3
gender_row = 3
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if value is None:
return None
# Extract value after colon and strip whitespace
value = value.split(":")[-1].strip()
# Convert disease state to binary (eczema vs non-eczema)
if value == "eczema":
return 1
elif value in ["psoriasis", "control (non-involved)"]:
return 0
return None
def convert_age(value):
if value is None:
return None
# Extract numeric age value
value = value.split(":")[-1].strip()
try:
# Remove 'y' and convert to integer
return int(value.replace('y',''))
except:
return None
def convert_gender(value):
if value is None:
return None
# Extract value after colon and strip whitespace
value = value.split(":")[-1].strip()
# Convert to binary (female=0, male=1)
if value == "female":
return 0
elif value == "male":
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract clinical features
clinical_df = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the data
print("Preview of clinical data:")
print(preview_df(clinical_df))
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Based on the format A_19_P00315XXX, these are Agilent probe IDs, not human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Get gene mapping from annotation data
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print shape and preview gene expression data
print("Gene expression data shape:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |