File size: 6,638 Bytes
75faa94
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Eczema"
cohort = "GSE63741"

# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE63741"

# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE63741.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE63741.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE63741.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on series title and summary mentioning gene expression analyses, and design mentioning total RNA
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Looking at sample characteristics:
# The trait (eczema) status can't be determined from any single row, but needs to be inferred from the descriptions
# 'Contact Eczema (KE)' vs others mentioned in the background
trait_row = 1  
# No age info
age_row = None
# No gender info  
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert disease type to binary trait indicator
    1: Contact Eczema (KE), 0: other conditions/healthy"""
    if not isinstance(value, str):
        return None
    value = value.lower()
    if "contact eczema" in value or "ke" in value:
        return 1
    elif any(x in value for x in ["psoriasis", "atopic dermatitis", "lichen planus", "healthy", "control"]):
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Not used as age data not available"""
    return None

def convert_gender(value: str) -> Optional[int]:
    """Not used as gender data not available"""
    return None

# 3. Save Metadata
# Initial filtering - only checking data availability
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    print("Preview of clinical features:")
    print(preview_df(clinical_features))
    
    # Save to CSV
    clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The IDs shown in the gene expression data are probe IDs from a microarray platform
# They need to be mapped to standard human gene symbols for downstream analysis
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Looking at the data:
# - Gene expression data uses numeric IDs in the 'ID' column
# - Gene annotation data has corresponding IDs in the 'ID' column 
# - The 'description' field contains gene symbols at the start before colon

# 2. Extract gene mapping
# Extract gene symbol from description field (text before colon)
gene_metadata['Gene'] = gene_metadata['description'].str.extract(r'^([^:]+):', expand=False)
# Some cleanup of gene symbols: remove parentheses content and whitespace
gene_metadata['Gene'] = gene_metadata['Gene'].str.replace(r'\s*\([^)]*\)', '', regex=True).str.strip()
# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene')

# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)

# Print shape and preview
print("Gene expression data shape:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)

# Fix trait values based on background information before linking
sample_order = list(gene_data.columns)  # Get sample order from gene data
sample_groups = {
    'Contact Eczema': range(0, 30),     # First 30 samples
    'Control': range(30, 150)           # Remaining samples
} 

# Create new trait series with corrected values
trait_values = pd.Series(0, index=sample_order)  # Initialize all as controls
trait_values.iloc[sample_groups['Contact Eczema']] = 1  # Set contact eczema cases
clinical_data.iloc[0] = trait_values  # Replace original trait row

linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Study about inflammatory skin diseases including contact eczema, atopic dermatitis, lichen planus, psoriasis and healthy controls."
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)