File size: 6,638 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Eczema"
cohort = "GSE63741"
# Input paths
in_trait_dir = "../DATA/GEO/Eczema"
in_cohort_dir = "../DATA/GEO/Eczema/GSE63741"
# Output paths
out_data_file = "./output/preprocess/3/Eczema/GSE63741.csv"
out_gene_data_file = "./output/preprocess/3/Eczema/gene_data/GSE63741.csv"
out_clinical_data_file = "./output/preprocess/3/Eczema/clinical_data/GSE63741.csv"
json_path = "./output/preprocess/3/Eczema/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on series title and summary mentioning gene expression analyses, and design mentioning total RNA
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# Looking at sample characteristics:
# The trait (eczema) status can't be determined from any single row, but needs to be inferred from the descriptions
# 'Contact Eczema (KE)' vs others mentioned in the background
trait_row = 1
# No age info
age_row = None
# No gender info
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert disease type to binary trait indicator
1: Contact Eczema (KE), 0: other conditions/healthy"""
if not isinstance(value, str):
return None
value = value.lower()
if "contact eczema" in value or "ke" in value:
return 1
elif any(x in value for x in ["psoriasis", "atopic dermatitis", "lichen planus", "healthy", "control"]):
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Not used as age data not available"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Not used as gender data not available"""
return None
# 3. Save Metadata
# Initial filtering - only checking data availability
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, extract clinical features
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# The IDs shown in the gene expression data are probe IDs from a microarray platform
# They need to be mapped to standard human gene symbols for downstream analysis
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. Looking at the data:
# - Gene expression data uses numeric IDs in the 'ID' column
# - Gene annotation data has corresponding IDs in the 'ID' column
# - The 'description' field contains gene symbols at the start before colon
# 2. Extract gene mapping
# Extract gene symbol from description field (text before colon)
gene_metadata['Gene'] = gene_metadata['description'].str.extract(r'^([^:]+):', expand=False)
# Some cleanup of gene symbols: remove parentheses content and whitespace
gene_metadata['Gene'] = gene_metadata['Gene'].str.replace(r'\s*\([^)]*\)', '', regex=True).str.strip()
# Get mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, 'ID', 'Gene')
# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print shape and preview
print("Gene expression data shape:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_data = pd.read_csv(out_clinical_data_file, index_col=0)
# Fix trait values based on background information before linking
sample_order = list(gene_data.columns) # Get sample order from gene data
sample_groups = {
'Contact Eczema': range(0, 30), # First 30 samples
'Control': range(30, 150) # Remaining samples
}
# Create new trait series with corrected values
trait_values = pd.Series(0, index=sample_order) # Initialize all as controls
trait_values.iloc[sample_groups['Contact Eczema']] = 1 # Set contact eczema cases
clinical_data.iloc[0] = trait_values # Replace original trait row
linked_data = geo_link_clinical_genetic_data(clinical_data, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study about inflammatory skin diseases including contact eczema, atopic dermatitis, lichen planus, psoriasis and healthy controls."
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |