File size: 5,295 Bytes
75faa94 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Endometrioid_Cancer"
cohort = "GSE120490"
# Input paths
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE120490"
# Output paths
out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE120490.csv"
out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE120490.csv"
out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE120490.csv"
json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Checking background info confirms this is microarray gene expression data
is_gene_available = True
# 2.1 Data Type Selection
# Using row 0 for trait since it contains metastasis status
trait_row = 0
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> Optional[int]:
"""Convert metastasis status to binary: 1 for Yes, 0 for No"""
if not isinstance(value, str):
return None
val = value.split(': ')[-1].strip().lower()
if val == 'yes':
return 1
elif val == 'no':
return 0
return None
def convert_age(value: str) -> Optional[float]:
"""Convert age to float - not used since age not available"""
return None
def convert_gender(value: str) -> Optional[int]:
"""Convert gender to binary - not used since gender not available"""
return None
# 3. Save Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
if trait_row is not None:
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(clinical_features)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These identifiers are from Affymetrix arrays and need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. The 'ID' column in gene_metadata matches the probe IDs in genetic_df
# The 'Gene Symbol' column contains the corresponding gene symbols
prob_col = 'ID'
gene_col = 'Gene Symbol'
# 2. Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Preview the results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few rows and columns of gene data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |