File size: 5,196 Bytes
ff3b0fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Endometrioid_Cancer"
cohort = "GSE66667"
# Input paths
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE66667"
# Output paths
out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE66667.csv"
out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE66667.csv"
out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE66667.csv"
json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on background info mentioning "Microarrays" and "global transcription",
# this appears to be gene expression data
is_gene_available = True
# 2.1 Data Availability
# Trait can be determined from "histology" field
trait_row = 0
# Age and gender are not available in the sample characteristics
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert histology values to binary for Endometrioid cancer"""
if not isinstance(value, str):
return None
# Extract value after colon and strip whitespace
if ":" in value:
value = value.split(":", 1)[1].strip()
# Convert to binary where Endometrioid = 1, others = 0
return 1 if value == "Endometrioid" else 0
def convert_age(value: str) -> float:
return None # Age data not available
def convert_gender(value: str) -> int:
return None # Gender data not available
# 3. Save Metadata - Initial Filtering
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we proceed with clinical feature extraction
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the clinical features
print("Preview of clinical features:")
print(preview_df(clinical_features))
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# Check gene identifiers format
# The IDs like '1007_s_at', '1053_at' etc. are Affymetrix probe IDs
# These need to be mapped to human gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Get gene mapping from annotation data
mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_df)
# Print shape and preview data
print("Shape of gene expression data:", gene_data.shape)
print("\nPreview of gene expression data:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)
# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=trait_biased,
df=linked_data,
note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
)
# 6. Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file) |