Liu-Hy commited on
Commit
ff3b0fa
·
verified ·
1 Parent(s): 75faa94

Add files using upload-large-folder tool

Browse files
This view is limited to 50 files because it contains too many changes.   See raw diff
Files changed (50) hide show
  1. .gitattributes +28 -0
  2. p3/preprocess/Breast_Cancer/TCGA.csv +3 -0
  3. p3/preprocess/Breast_Cancer/gene_data/TCGA.csv +3 -0
  4. p3/preprocess/Cystic_Fibrosis/gene_data/GSE60690.csv +3 -0
  5. p3/preprocess/Eczema/gene_data/GSE150797.csv +3 -0
  6. p3/preprocess/Eczema/gene_data/GSE182740.csv +3 -0
  7. p3/preprocess/Eczema/gene_data/GSE57225.csv +3 -0
  8. p3/preprocess/Eczema/gene_data/GSE61225.csv +3 -0
  9. p3/preprocess/Endometrioid_Cancer/GSE120490.csv +3 -0
  10. p3/preprocess/Endometrioid_Cancer/GSE73551.csv +3 -0
  11. p3/preprocess/Endometrioid_Cancer/GSE73637.csv +3 -0
  12. p3/preprocess/Endometrioid_Cancer/clinical_data/GSE94524.csv +2 -0
  13. p3/preprocess/Endometrioid_Cancer/code/GSE65986.py +167 -0
  14. p3/preprocess/Endometrioid_Cancer/code/GSE66667.py +152 -0
  15. p3/preprocess/Endometrioid_Cancer/code/GSE68600.py +154 -0
  16. p3/preprocess/Endometrioid_Cancer/code/GSE73551.py +150 -0
  17. p3/preprocess/Endometrioid_Cancer/code/GSE73614.py +133 -0
  18. p3/preprocess/Endometrioid_Cancer/code/GSE73637.py +173 -0
  19. p3/preprocess/Endometrioid_Cancer/code/GSE94523.py +142 -0
  20. p3/preprocess/Endometrioid_Cancer/code/GSE94524.py +151 -0
  21. p3/preprocess/Endometrioid_Cancer/code/TCGA.py +80 -0
  22. p3/preprocess/Endometrioid_Cancer/gene_data/GSE120490.csv +3 -0
  23. p3/preprocess/Endometrioid_Cancer/gene_data/GSE40785.csv +0 -0
  24. p3/preprocess/Endometrioid_Cancer/gene_data/GSE65986.csv +0 -0
  25. p3/preprocess/Endometrioid_Cancer/gene_data/GSE66667.csv +0 -0
  26. p3/preprocess/Endometrioid_Cancer/gene_data/GSE68600.csv +0 -0
  27. p3/preprocess/Endometrioid_Cancer/gene_data/GSE73551.csv +3 -0
  28. p3/preprocess/Endometrioid_Cancer/gene_data/GSE73614.csv +3 -0
  29. p3/preprocess/Endometrioid_Cancer/gene_data/GSE73637.csv +3 -0
  30. p3/preprocess/Endometrioid_Cancer/gene_data/GSE94523.csv +3 -0
  31. p3/preprocess/Endometrioid_Cancer/gene_data/GSE94524.csv +3 -0
  32. p3/preprocess/Endometriosis/GSE120103.csv +0 -0
  33. p3/preprocess/Endometriosis/GSE145701.csv +3 -0
  34. p3/preprocess/Endometriosis/GSE145702.csv +3 -0
  35. p3/preprocess/Endometriosis/GSE37837.csv +0 -0
  36. p3/preprocess/Endometriosis/GSE51981.csv +3 -0
  37. p3/preprocess/Endometriosis/clinical_data/GSE111974.csv +2 -0
  38. p3/preprocess/Endometriosis/clinical_data/GSE120103.csv +3 -0
  39. p3/preprocess/Endometriosis/clinical_data/GSE138297.csv +4 -0
  40. p3/preprocess/Endometriosis/clinical_data/GSE145701.csv +2 -0
  41. p3/preprocess/Endometriosis/clinical_data/GSE145702.csv +2 -0
  42. p3/preprocess/Endometriosis/clinical_data/GSE165004.csv +2 -0
  43. p3/preprocess/Endometriosis/clinical_data/GSE37837.csv +3 -0
  44. p3/preprocess/Endometriosis/clinical_data/GSE51981.csv +2 -0
  45. p3/preprocess/Endometriosis/clinical_data/GSE73622.csv +3 -0
  46. p3/preprocess/Endometriosis/clinical_data/GSE75427.csv +3 -0
  47. p3/preprocess/Endometriosis/clinical_data/TCGA.csv +597 -0
  48. p3/preprocess/Endometriosis/code/GSE111974.py +122 -0
  49. p3/preprocess/Endometriosis/code/GSE120103.py +166 -0
  50. p3/preprocess/Endometriosis/code/GSE138297.py +138 -0
.gitattributes CHANGED
@@ -1636,3 +1636,31 @@ p3/preprocess/Duchenne_Muscular_Dystrophy/GSE79263.csv filter=lfs diff=lfs merge
1636
  p3/preprocess/Eczema/GSE57225.csv filter=lfs diff=lfs merge=lfs -text
1637
  p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv filter=lfs diff=lfs merge=lfs -text
1638
  p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1636
  p3/preprocess/Eczema/GSE57225.csv filter=lfs diff=lfs merge=lfs -text
1637
  p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE13608.csv filter=lfs diff=lfs merge=lfs -text
1638
  p3/preprocess/Duchenne_Muscular_Dystrophy/gene_data/GSE79263.csv filter=lfs diff=lfs merge=lfs -text
1639
+ p3/preprocess/Cystic_Fibrosis/gene_data/GSE60690.csv filter=lfs diff=lfs merge=lfs -text
1640
+ p3/preprocess/Eczema/gene_data/GSE150797.csv filter=lfs diff=lfs merge=lfs -text
1641
+ p3/preprocess/Eczema/gene_data/GSE182740.csv filter=lfs diff=lfs merge=lfs -text
1642
+ p3/preprocess/Eczema/gene_data/GSE61225.csv filter=lfs diff=lfs merge=lfs -text
1643
+ p3/preprocess/Endometrioid_Cancer/GSE73551.csv filter=lfs diff=lfs merge=lfs -text
1644
+ p3/preprocess/Eczema/gene_data/GSE57225.csv filter=lfs diff=lfs merge=lfs -text
1645
+ p3/preprocess/Endometrioid_Cancer/GSE73637.csv filter=lfs diff=lfs merge=lfs -text
1646
+ p3/preprocess/Endometrioid_Cancer/gene_data/GSE73637.csv filter=lfs diff=lfs merge=lfs -text
1647
+ p3/preprocess/Endometrioid_Cancer/gene_data/GSE94523.csv filter=lfs diff=lfs merge=lfs -text
1648
+ p3/preprocess/Endometrioid_Cancer/GSE120490.csv filter=lfs diff=lfs merge=lfs -text
1649
+ p3/preprocess/Endometrioid_Cancer/gene_data/GSE73551.csv filter=lfs diff=lfs merge=lfs -text
1650
+ p3/preprocess/Endometrioid_Cancer/gene_data/GSE94524.csv filter=lfs diff=lfs merge=lfs -text
1651
+ p3/preprocess/Endometriosis/GSE145701.csv filter=lfs diff=lfs merge=lfs -text
1652
+ p3/preprocess/Endometrioid_Cancer/gene_data/GSE73614.csv filter=lfs diff=lfs merge=lfs -text
1653
+ p3/preprocess/Endometriosis/GSE145702.csv filter=lfs diff=lfs merge=lfs -text
1654
+ p3/preprocess/Endometrioid_Cancer/gene_data/GSE120490.csv filter=lfs diff=lfs merge=lfs -text
1655
+ p3/preprocess/Endometriosis/gene_data/GSE138297.csv filter=lfs diff=lfs merge=lfs -text
1656
+ p3/preprocess/Endometriosis/gene_data/GSE145701.csv filter=lfs diff=lfs merge=lfs -text
1657
+ p3/preprocess/Endometriosis/gene_data/GSE145702.csv filter=lfs diff=lfs merge=lfs -text
1658
+ p3/preprocess/Endometriosis/gene_data/GSE165004.csv filter=lfs diff=lfs merge=lfs -text
1659
+ p3/preprocess/Endometriosis/gene_data/GSE73622.csv filter=lfs diff=lfs merge=lfs -text
1660
+ p3/preprocess/Epilepsy/GSE29796.csv filter=lfs diff=lfs merge=lfs -text
1661
+ p3/preprocess/Epilepsy/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
1662
+ p3/preprocess/Breast_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1663
+ p3/preprocess/Endometriosis/GSE51981.csv filter=lfs diff=lfs merge=lfs -text
1664
+ p3/preprocess/Breast_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
1665
+ p3/preprocess/Epilepsy/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
1666
+ p3/preprocess/Endometriosis/gene_data/GSE51981.csv filter=lfs diff=lfs merge=lfs -text
p3/preprocess/Breast_Cancer/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:cda1b9fc5917bef1eb1785466dfda39c6eebd130dd71ba5b5ad8b67e602c67ec
3
+ size 366192791
p3/preprocess/Breast_Cancer/gene_data/TCGA.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e1a47fcb67bc7f6668ff63f0ac0d46c7b4c84cb6583d4d5a7788d48a7ba49ba5
3
+ size 366179338
p3/preprocess/Cystic_Fibrosis/gene_data/GSE60690.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f5446f7aeb1f2365f1158185fbf85cf89785420eb34a02947c17d5a70e8aa200
3
+ size 75307436
p3/preprocess/Eczema/gene_data/GSE150797.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7d99413c82ece4b56f41fce07246406ff5145f55d390aaf111130496ad73688a
3
+ size 15938087
p3/preprocess/Eczema/gene_data/GSE182740.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:095173af41a72566b017be3af9b37ffcce35a7b1300de4acb4731e97fb40270d
3
+ size 16722597
p3/preprocess/Eczema/gene_data/GSE57225.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:04e68c8383ece4574a117f19746426af4d18aff14370c16c48c34694742b4f4f
3
+ size 15230778
p3/preprocess/Eczema/gene_data/GSE61225.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:6abea5e3e2451293c56e225f9dc85e8938e5c468b7cfa0992393161c696fc861
3
+ size 16079056
p3/preprocess/Endometrioid_Cancer/GSE120490.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:880bf10a409d954a6dfa15748358538e157ce84c0f75b2ca715f1a3fc8365056
3
+ size 38250570
p3/preprocess/Endometrioid_Cancer/GSE73551.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:d4c290838f5d518e6242d47cad1fd2f7170339fdb7b700f1ad1c9a79e681d9d2
3
+ size 14282175
p3/preprocess/Endometrioid_Cancer/GSE73637.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:f1113d5e252d1c8f4900a8051a54096979fcb28598c3b102b3b3be35f3493cc2
3
+ size 11465013
p3/preprocess/Endometrioid_Cancer/clinical_data/GSE94524.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM2477471,GSM2477472,GSM2477473,GSM2477474,GSM2477475,GSM2477476,GSM2477477,GSM2477478,GSM2477479,GSM2477480,GSM2477481,GSM2477482,GSM2477483,GSM2477484,GSM2477485,GSM2477486,GSM2477487,GSM2477488,GSM2477489,GSM2477490,GSM2477491,GSM2477492,GSM2477493,GSM2477494,GSM2477495,GSM2477496,GSM2477497,GSM2477498,GSM2477499,GSM2477500,GSM2477501,GSM2477502,GSM2477503,GSM2477504,GSM2477505,GSM2477506,GSM2477507,GSM2477508,GSM2477509,GSM2477510,GSM2477511,GSM2477512,GSM2477513,GSM2477514,GSM2477515,GSM2477516,GSM2477517,GSM2477518,GSM2477519,GSM2477520,GSM2477521,GSM2477522,GSM2477523,GSM2477524,GSM2477525,GSM2477526,GSM2477527,GSM2477528,GSM2477529,GSM2477530,GSM2477531,GSM2477532,GSM2477533,GSM2477534,GSM2477535,GSM2477536,GSM2477537,GSM2477538,GSM2477539,GSM2477540,GSM2477541,GSM2477542,GSM2477543,GSM2477544,GSM2477545,GSM2477546,GSM2477547,GSM2477548,GSM2477549,GSM2477550,GSM2477551,GSM2477552,GSM2477553,GSM2477554,GSM2477555,GSM2477556,GSM2477557,GSM2477558,GSM2477559,GSM2477560,GSM2477561,GSM2477562,GSM2477563,GSM2477564,GSM2477565,GSM2477566,GSM2477567,GSM2477568,GSM2477569,GSM2477570,GSM2477571,GSM2477572,GSM2477573,GSM2477574,GSM2477575,GSM2477576,GSM2477577,GSM2477578,GSM2477579,GSM2477580,GSM2477581
2
+ Endometrioid_Cancer,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Endometrioid_Cancer/code/GSE65986.py ADDED
@@ -0,0 +1,167 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE65986"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE65986"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE65986.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE65986.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE65986.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene expression data availability
33
+ # From background info: "Gene expression in 55 epithelial ovarian cancers ... was analyzed by Affymetrix U133plus2 array"
34
+ is_gene_available = True
35
+
36
+ # 2.1 Data availability
37
+ # For trait (Endometrioid_Cancer):
38
+ # Key 0 has cancer histology types including "Endometrioid"
39
+ trait_row = 0
40
+
41
+ # For age:
42
+ # Key 1 has age values
43
+ age_row = 1
44
+
45
+ # For gender:
46
+ # No gender info in characteristics, all samples appear to be female based on ovarian cancer study
47
+ gender_row = None
48
+
49
+ # 2.2 Data type conversion functions
50
+ def convert_trait(x):
51
+ if not isinstance(x, str):
52
+ return None
53
+ x = x.split(': ')[1].lower() if ': ' in x else x.lower()
54
+ if 'endometrioid' in x:
55
+ return 1
56
+ elif x in ['clear', 'serous']: # Other cancer types
57
+ return 0
58
+ return None
59
+
60
+ def convert_age(x):
61
+ if not isinstance(x, str):
62
+ return None
63
+ try:
64
+ return float(x.split(': ')[1])
65
+ except:
66
+ return None
67
+
68
+ def convert_gender(x):
69
+ return None # No gender data
70
+
71
+ # 3. Save metadata
72
+ validate_and_save_cohort_info(
73
+ is_final=False,
74
+ cohort=cohort,
75
+ info_path=json_path,
76
+ is_gene_available=is_gene_available,
77
+ is_trait_available=(trait_row is not None)
78
+ )
79
+
80
+ # 4. Extract clinical features
81
+ selected_clinical = geo_select_clinical_features(
82
+ clinical_df=clinical_data,
83
+ trait=trait,
84
+ trait_row=trait_row,
85
+ convert_trait=convert_trait,
86
+ age_row=age_row,
87
+ convert_age=convert_age,
88
+ gender_row=gender_row,
89
+ convert_gender=convert_gender
90
+ )
91
+
92
+ # Preview the processed clinical data
93
+ preview_result = preview_df(selected_clinical)
94
+ print("Preview of processed clinical data:")
95
+ print(preview_result)
96
+
97
+ # Save clinical data
98
+ selected_clinical.to_csv(out_clinical_data_file)
99
+ # Extract gene expression data from matrix file
100
+ genetic_df = get_genetic_data(matrix_file)
101
+
102
+ # Print DataFrame shape and first 20 row IDs
103
+ print("DataFrame shape:", genetic_df.shape)
104
+ print("\nFirst 20 row IDs:")
105
+ print(genetic_df.index[:20])
106
+
107
+ print("\nPreview of first few rows and columns:")
108
+ print(genetic_df.head().iloc[:, :5])
109
+ # Based on the gene expression data preview:
110
+ # The identifiers shown are probe IDs from Affymetrix microarray platform
111
+ # (e.g., '1007_s_at', '1053_at' are typical Affymetrix probe formats)
112
+ # These need to be mapped to human gene symbols for standardization
113
+ requires_gene_mapping = True
114
+ # Extract gene annotation data, excluding control probe lines
115
+ gene_metadata = get_gene_annotation(soft_file)
116
+
117
+ # Preview filtered annotation data
118
+ print("Column names:")
119
+ print(gene_metadata.columns)
120
+ print("\nPreview of gene annotation data:")
121
+ print(preview_df(gene_metadata))
122
+ # 1. The 'ID' column in gene_metadata contains probe IDs (e.g., '1007_s_at') matching the gene expression data indices,
123
+ # and 'Gene Symbol' column contains the corresponding gene symbols
124
+ prob_col = 'ID'
125
+ gene_col = 'Gene Symbol'
126
+
127
+ # 2. Get mapping between probe IDs and gene symbols
128
+ mapping_df = get_gene_mapping(gene_metadata, prob_col, gene_col)
129
+
130
+ # 3. Convert probe-level measurements to gene-level expression
131
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
132
+
133
+ # Print shape and preview first few rows
134
+ print("Gene expression data shape:", gene_data.shape)
135
+ print("\nPreview of first few rows and columns:")
136
+ print(gene_data.head().iloc[:, :5])
137
+ # 1. Normalize gene symbols and save
138
+ gene_data = normalize_gene_symbols_in_index(gene_data)
139
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
140
+ gene_data.to_csv(out_gene_data_file)
141
+
142
+ # 2. Link clinical and genetic data
143
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
144
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
145
+
146
+ # 3. Handle missing values
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for biased features
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Final validation and metadata saving
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
162
+ )
163
+
164
+ # 6. Save linked data if usable
165
+ if is_usable:
166
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
167
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometrioid_Cancer/code/GSE66667.py ADDED
@@ -0,0 +1,152 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE66667"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE66667"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE66667.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE66667.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE66667.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Based on background info mentioning "Microarrays" and "global transcription",
34
+ # this appears to be gene expression data
35
+ is_gene_available = True
36
+
37
+ # 2.1 Data Availability
38
+ # Trait can be determined from "histology" field
39
+ trait_row = 0
40
+
41
+ # Age and gender are not available in the sample characteristics
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(value: str) -> int:
47
+ """Convert histology values to binary for Endometrioid cancer"""
48
+ if not isinstance(value, str):
49
+ return None
50
+ # Extract value after colon and strip whitespace
51
+ if ":" in value:
52
+ value = value.split(":", 1)[1].strip()
53
+ # Convert to binary where Endometrioid = 1, others = 0
54
+ return 1 if value == "Endometrioid" else 0
55
+
56
+ def convert_age(value: str) -> float:
57
+ return None # Age data not available
58
+
59
+ def convert_gender(value: str) -> int:
60
+ return None # Gender data not available
61
+
62
+ # 3. Save Metadata - Initial Filtering
63
+ validate_and_save_cohort_info(
64
+ is_final=False,
65
+ cohort=cohort,
66
+ info_path=json_path,
67
+ is_gene_available=is_gene_available,
68
+ is_trait_available=(trait_row is not None)
69
+ )
70
+
71
+ # 4. Clinical Feature Extraction
72
+ # Since trait_row is not None, we proceed with clinical feature extraction
73
+ clinical_features = geo_select_clinical_features(
74
+ clinical_df=clinical_data,
75
+ trait=trait,
76
+ trait_row=trait_row,
77
+ convert_trait=convert_trait,
78
+ age_row=age_row,
79
+ convert_age=convert_age,
80
+ gender_row=gender_row,
81
+ convert_gender=convert_gender
82
+ )
83
+
84
+ # Preview the clinical features
85
+ print("Preview of clinical features:")
86
+ print(preview_df(clinical_features))
87
+
88
+ # Save clinical features
89
+ clinical_features.to_csv(out_clinical_data_file)
90
+ # Extract gene expression data from matrix file
91
+ genetic_df = get_genetic_data(matrix_file)
92
+
93
+ # Print DataFrame shape and first 20 row IDs
94
+ print("DataFrame shape:", genetic_df.shape)
95
+ print("\nFirst 20 row IDs:")
96
+ print(genetic_df.index[:20])
97
+
98
+ print("\nPreview of first few rows and columns:")
99
+ print(genetic_df.head().iloc[:, :5])
100
+ # Check gene identifiers format
101
+ # The IDs like '1007_s_at', '1053_at' etc. are Affymetrix probe IDs
102
+ # These need to be mapped to human gene symbols
103
+ requires_gene_mapping = True
104
+ # Extract gene annotation data, excluding control probe lines
105
+ gene_metadata = get_gene_annotation(soft_file)
106
+
107
+ # Preview filtered annotation data
108
+ print("Column names:")
109
+ print(gene_metadata.columns)
110
+ print("\nPreview of gene annotation data:")
111
+ print(preview_df(gene_metadata))
112
+ # Get gene mapping from annotation data
113
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
114
+
115
+ # Apply gene mapping to convert probe-level data to gene-level data
116
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
117
+
118
+ # Print shape and preview data
119
+ print("Shape of gene expression data:", gene_data.shape)
120
+ print("\nPreview of gene expression data:")
121
+ print(gene_data.head().iloc[:, :5])
122
+ # 1. Normalize gene symbols and save
123
+ gene_data = normalize_gene_symbols_in_index(gene_data)
124
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
125
+ gene_data.to_csv(out_gene_data_file)
126
+
127
+ # 2. Link clinical and genetic data
128
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
129
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
130
+
131
+ # 3. Handle missing values
132
+ linked_data = handle_missing_values(linked_data, trait)
133
+
134
+ # 4. Check for biased features
135
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
136
+
137
+ # 5. Final validation and metadata saving
138
+ is_usable = validate_and_save_cohort_info(
139
+ is_final=True,
140
+ cohort=cohort,
141
+ info_path=json_path,
142
+ is_gene_available=True,
143
+ is_trait_available=True,
144
+ is_biased=trait_biased,
145
+ df=linked_data,
146
+ note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
147
+ )
148
+
149
+ # 6. Save linked data if usable
150
+ if is_usable:
151
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
152
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometrioid_Cancer/code/GSE68600.py ADDED
@@ -0,0 +1,154 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE68600"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE68600"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE68600.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE68600.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE68600.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # Gene expression data availability - Yes, as indicated by !Series_title about gene expression data and Affymetrix array
33
+ is_gene_available = True
34
+
35
+ # Variable availability
36
+ # Trait - Row 4 contains histological types. Endometrioid type indicates trait presence
37
+ trait_row = 4
38
+
39
+ # Age - Not available in sample characteristics
40
+ age_row = None
41
+
42
+ # Gender - Row 0 contains gender info but all samples are female (F), so not useful
43
+ gender_row = None
44
+
45
+ def convert_trait(value):
46
+ """Convert histology type to binary for endometrioid cancer"""
47
+ if pd.isna(value) or not isinstance(value, str):
48
+ return None
49
+ value = value.lower().split(": ")[-1]
50
+ # Positive if endometrioid is mentioned in histology
51
+ if "endometrioid" in value:
52
+ return 1
53
+ # Other histology types are negative
54
+ return 0
55
+
56
+ # Age conversion function not needed since age data unavailable
57
+ convert_age = None
58
+
59
+ # Gender conversion function not needed since all samples are female
60
+ convert_gender = None
61
+
62
+ # Save metadata - is_trait_available determined by trait_row being not None
63
+ is_trait_available = trait_row is not None
64
+ validate_and_save_cohort_info(
65
+ is_final=False,
66
+ cohort=cohort,
67
+ info_path=json_path,
68
+ is_gene_available=is_gene_available,
69
+ is_trait_available=is_trait_available
70
+ )
71
+
72
+ # Extract clinical features since trait data is available
73
+ clinical_df = geo_select_clinical_features(
74
+ clinical_data,
75
+ trait=trait,
76
+ trait_row=trait_row,
77
+ convert_trait=convert_trait,
78
+ age_row=age_row,
79
+ convert_age=convert_age,
80
+ gender_row=gender_row,
81
+ convert_gender=convert_gender
82
+ )
83
+
84
+ # Preview extracted clinical data
85
+ preview_dict = preview_df(clinical_df)
86
+ print("Preview of clinical data:")
87
+ print(preview_dict)
88
+
89
+ # Save clinical data
90
+ clinical_df.to_csv(out_clinical_data_file)
91
+ # Extract gene expression data from matrix file
92
+ genetic_df = get_genetic_data(matrix_file)
93
+
94
+ # Print DataFrame shape and first 20 row IDs
95
+ print("DataFrame shape:", genetic_df.shape)
96
+ print("\nFirst 20 row IDs:")
97
+ print(genetic_df.index[:20])
98
+
99
+ print("\nPreview of first few rows and columns:")
100
+ print(genetic_df.head().iloc[:, :5])
101
+ # The identifiers like 'A28102_at', 'AB000114_at' etc. appear to be Affymetrix probe IDs
102
+ # rather than human gene symbols. These will need to be mapped to standard gene symbols.
103
+ requires_gene_mapping = True
104
+ # Extract gene annotation data, excluding control probe lines
105
+ gene_metadata = get_gene_annotation(soft_file)
106
+
107
+ # Preview filtered annotation data
108
+ print("Column names:")
109
+ print(gene_metadata.columns)
110
+ print("\nPreview of gene annotation data:")
111
+ print(preview_df(gene_metadata))
112
+ # Get gene mapping dataframe from annotation data
113
+ # 'ID' stores probe IDs matching gene expression data
114
+ # 'Gene Symbol' stores corresponding gene symbols
115
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='Gene Symbol')
116
+
117
+ # Apply gene mapping to convert probe-level data to gene expression data
118
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
119
+
120
+ # Print shape of gene expression data after mapping
121
+ print("Gene expression data shape after mapping:", gene_data.shape)
122
+ print("\nPreview of first few rows and columns:")
123
+ print(gene_data.iloc[:5, :5])
124
+ # 1. Normalize gene symbols and save
125
+ gene_data = normalize_gene_symbols_in_index(gene_data)
126
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
127
+ gene_data.to_csv(out_gene_data_file)
128
+
129
+ # 2. Link clinical and genetic data
130
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
131
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
132
+
133
+ # 3. Handle missing values
134
+ linked_data = handle_missing_values(linked_data, trait)
135
+
136
+ # 4. Check for biased features
137
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
138
+
139
+ # 5. Final validation and metadata saving
140
+ is_usable = validate_and_save_cohort_info(
141
+ is_final=True,
142
+ cohort=cohort,
143
+ info_path=json_path,
144
+ is_gene_available=True,
145
+ is_trait_available=True,
146
+ is_biased=trait_biased,
147
+ df=linked_data,
148
+ note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
149
+ )
150
+
151
+ # 6. Save linked data if usable
152
+ if is_usable:
153
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
154
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometrioid_Cancer/code/GSE73551.py ADDED
@@ -0,0 +1,150 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE73551"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73551"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73551.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73551.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73551.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Based on the background information showing solid tumor gene expression analysis,
34
+ # this dataset likely contains gene expression data
35
+ is_gene_available = True
36
+
37
+ # 2.1 Data Availability
38
+ # Trait (Endometrioid Cancer) can be inferred from cell type in key 0
39
+ trait_row = 0
40
+
41
+ # Age and gender not recorded in characteristics
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # 2.2 Data Type Conversion Functions
46
+ def convert_trait(value):
47
+ if not isinstance(value, str):
48
+ return None
49
+ # Extract value after colon if present
50
+ if ':' in value:
51
+ value = value.split(':', 1)[1].strip()
52
+ # Convert to binary - 1 for endometrioid, 0 for other cancer types
53
+ return 1 if value.upper() == 'ENDOMETRIOID' else 0
54
+
55
+ # Since age/gender not available, their conversion functions not needed
56
+ convert_age = None
57
+ convert_gender = None
58
+
59
+ # 3. Save metadata
60
+ validate_and_save_cohort_info(
61
+ is_final=False,
62
+ cohort=cohort,
63
+ info_path=json_path,
64
+ is_gene_available=is_gene_available,
65
+ is_trait_available=(trait_row is not None)
66
+ )
67
+
68
+ # 4. Clinical Feature Extraction
69
+ # Since trait_row is not None, proceed with extraction
70
+ selected_clinical = geo_select_clinical_features(
71
+ clinical_df=clinical_data,
72
+ trait=trait,
73
+ trait_row=trait_row,
74
+ convert_trait=convert_trait,
75
+ age_row=age_row,
76
+ convert_age=convert_age,
77
+ gender_row=gender_row,
78
+ convert_gender=convert_gender
79
+ )
80
+
81
+ # Preview the processed clinical data
82
+ print("Preview of processed clinical data:")
83
+ print(preview_df(selected_clinical))
84
+
85
+ # Save clinical data
86
+ selected_clinical.to_csv(out_clinical_data_file)
87
+ # Extract gene expression data from matrix file
88
+ genetic_df = get_genetic_data(matrix_file)
89
+
90
+ # Print DataFrame shape and first 20 row IDs
91
+ print("DataFrame shape:", genetic_df.shape)
92
+ print("\nFirst 20 row IDs:")
93
+ print(genetic_df.index[:20])
94
+
95
+ print("\nPreview of first few rows and columns:")
96
+ print(genetic_df.head().iloc[:, :5])
97
+ # The row IDs are numeric indices (1, 2, 3, etc.) rather than human gene symbols or probe IDs,
98
+ # so gene mapping is required
99
+ requires_gene_mapping = True
100
+ # Extract gene annotation data, excluding control probe lines
101
+ gene_metadata = get_gene_annotation(soft_file)
102
+
103
+ # Preview filtered annotation data
104
+ print("Column names:")
105
+ print(gene_metadata.columns)
106
+ print("\nPreview of gene annotation data:")
107
+ print(preview_df(gene_metadata))
108
+ # Extract gene mapping information from annotation data
109
+ # 'ID' in gene_metadata matches the numeric indices in genetic_df
110
+ # 'GeneSymbol' contains the human gene symbols
111
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GeneSymbol')
112
+
113
+ # Apply gene mapping to convert probe-level data to gene-level data
114
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
115
+
116
+ # Preview the mapped gene expression data
117
+ print("Shape of gene expression data after mapping:", gene_data.shape)
118
+ print("\nFirst few rows and columns:")
119
+ print(gene_data.head().iloc[:, :5])
120
+ # 1. Normalize gene symbols and save
121
+ gene_data = normalize_gene_symbols_in_index(gene_data)
122
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
123
+ gene_data.to_csv(out_gene_data_file)
124
+
125
+ # 2. Link clinical and genetic data
126
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
127
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
128
+
129
+ # 3. Handle missing values
130
+ linked_data = handle_missing_values(linked_data, trait)
131
+
132
+ # 4. Check for biased features
133
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
134
+
135
+ # 5. Final validation and metadata saving
136
+ is_usable = validate_and_save_cohort_info(
137
+ is_final=True,
138
+ cohort=cohort,
139
+ info_path=json_path,
140
+ is_gene_available=True,
141
+ is_trait_available=True,
142
+ is_biased=trait_biased,
143
+ df=linked_data,
144
+ note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
145
+ )
146
+
147
+ # 6. Save linked data if usable
148
+ if is_usable:
149
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
150
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometrioid_Cancer/code/GSE73614.py ADDED
@@ -0,0 +1,133 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE73614"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73614"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73614.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73614.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73614.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # Based on the series summary mentioning "transcriptional profile" and "gene expression signatures",
34
+ # this dataset appears to contain gene expression data
35
+ is_gene_available = True
36
+
37
+ # 2. Variable Availability and Data Type Conversion
38
+ # We cannot reliably determine case/control status from tissue field, so trait data is not available
39
+ trait_row = None
40
+ age_row = None
41
+ gender_row = None
42
+
43
+ def convert_trait(value: str) -> Optional[int]:
44
+ if value is None:
45
+ return None
46
+ val = value.split(": ")[-1].strip().lower()
47
+ if "endometrioid" in val:
48
+ return 1
49
+ elif val in ["healthy", "normal", "benign"]:
50
+ return 0
51
+ return None
52
+
53
+ def convert_age(value: str) -> Optional[float]:
54
+ if value is None:
55
+ return None
56
+ val = value.split(": ")[-1].strip()
57
+ try:
58
+ return float(val)
59
+ except:
60
+ return None
61
+
62
+ def convert_gender(value: str) -> Optional[int]:
63
+ if value is None:
64
+ return None
65
+ val = value.split(": ")[-1].strip().lower()
66
+ if val in ["female", "f"]:
67
+ return 0
68
+ elif val in ["male", "m"]:
69
+ return 1
70
+ return None
71
+
72
+ # 3. Save Metadata
73
+ # Initial filtering - trait data not available
74
+ is_trait_available = trait_row is not None
75
+ _ = validate_and_save_cohort_info(
76
+ is_final=False,
77
+ cohort=cohort,
78
+ info_path=json_path,
79
+ is_gene_available=is_gene_available,
80
+ is_trait_available=is_trait_available
81
+ )
82
+
83
+ # 4. Clinical Feature Extraction
84
+ # Skip since trait_row is None
85
+ # Extract gene expression data from matrix file
86
+ genetic_df = get_genetic_data(matrix_file)
87
+
88
+ # Print DataFrame shape and first 20 row IDs
89
+ print("DataFrame shape:", genetic_df.shape)
90
+ print("\nFirst 20 row IDs:")
91
+ print(genetic_df.index[:20])
92
+
93
+ print("\nPreview of first few rows and columns:")
94
+ print(genetic_df.head().iloc[:, :5])
95
+ # These appear to be Agilent probe IDs (e.g. A_23_P100001) rather than gene symbols
96
+ requires_gene_mapping = True
97
+ # Extract gene annotation data, excluding control probe lines
98
+ gene_metadata = get_gene_annotation(soft_file)
99
+
100
+ # Preview filtered annotation data
101
+ print("Column names:")
102
+ print(gene_metadata.columns)
103
+ print("\nPreview of gene annotation data:")
104
+ print(preview_df(gene_metadata))
105
+ # 1. From the preview, we can see that 'ID' contains probe IDs like A_23_P100001
106
+ # and 'GENE_SYMBOL' contains human gene symbols
107
+
108
+ # 2. Get mapping between probe IDs and gene symbols
109
+ gene_mapping = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
110
+
111
+ # 3. Apply mapping to convert probe-level data to gene expression data
112
+ gene_data = apply_gene_mapping(genetic_df, gene_mapping)
113
+
114
+ # Preview results
115
+ print("Gene expression data shape:", gene_data.shape)
116
+ print("\nFirst few genes and samples:")
117
+ print(gene_data.head().iloc[:, :5])
118
+ # 1. Normalize gene symbols and save
119
+ gene_data = normalize_gene_symbols_in_index(gene_data)
120
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
121
+ gene_data.to_csv(out_gene_data_file)
122
+
123
+ # Final validation with the gene expression data
124
+ is_usable = validate_and_save_cohort_info(
125
+ is_final=True,
126
+ cohort=cohort,
127
+ info_path=json_path,
128
+ is_gene_available=True,
129
+ is_trait_available=False,
130
+ is_biased=True, # No trait data means biased for our purpose
131
+ df=gene_data,
132
+ note="Gene expression data available but no trait information could be extracted"
133
+ )
p3/preprocess/Endometrioid_Cancer/code/GSE73637.py ADDED
@@ -0,0 +1,173 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE73637"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73637"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73637.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73637.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73637.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # 1. Gene Expression Data Availability
33
+ # From series title and design, this appears to be gene expression data from cell lines
34
+ is_gene_available = True
35
+
36
+ # 2. Variable Availability and Data Type Conversion
37
+ # 2.1 Data Rows
38
+ # Trait (Endometrioid) can be determined from histopathology in row 3
39
+ trait_row = 3
40
+
41
+ # Age and gender not available for cell lines
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # 2.2 Conversion Functions
46
+ def convert_trait(value: str) -> Optional[int]:
47
+ """Convert histopathology to binary trait"""
48
+ if not value or ':' not in value:
49
+ return None
50
+ value = value.split(':')[1].strip().lower()
51
+ if 'endometrioid' in value:
52
+ return 1
53
+ # For cases where we can be sure it's not endometrioid
54
+ if any(x in value for x in ['serous', 'clear cell', 'undifferentiated']):
55
+ return 0
56
+ return None
57
+
58
+ def convert_age(value: str) -> Optional[float]:
59
+ """Placeholder function since age data not available"""
60
+ return None
61
+
62
+ def convert_gender(value: str) -> Optional[int]:
63
+ """Placeholder function since gender data not available"""
64
+ return None
65
+
66
+ # 3. Save metadata
67
+ is_usable = validate_and_save_cohort_info(
68
+ is_final=False,
69
+ cohort=cohort,
70
+ info_path=json_path,
71
+ is_gene_available=is_gene_available,
72
+ is_trait_available=(trait_row is not None)
73
+ )
74
+
75
+ # 4. Clinical Feature Extraction
76
+ if trait_row is not None:
77
+ clinical_features = geo_select_clinical_features(
78
+ clinical_df=clinical_data,
79
+ trait=trait,
80
+ trait_row=trait_row,
81
+ convert_trait=convert_trait,
82
+ age_row=age_row,
83
+ convert_age=convert_age,
84
+ gender_row=gender_row,
85
+ convert_gender=convert_gender
86
+ )
87
+
88
+ # Preview the extracted features
89
+ preview = preview_df(clinical_features)
90
+ print("Preview of clinical features:")
91
+ print(preview)
92
+
93
+ # Save to CSV
94
+ clinical_features.to_csv(out_clinical_data_file)
95
+ # Extract gene expression data from matrix file
96
+ genetic_df = get_genetic_data(matrix_file)
97
+
98
+ # Print DataFrame shape and first 20 row IDs
99
+ print("DataFrame shape:", genetic_df.shape)
100
+ print("\nFirst 20 row IDs:")
101
+ print(genetic_df.index[:20])
102
+
103
+ print("\nPreview of first few rows and columns:")
104
+ print(genetic_df.head().iloc[:, :5])
105
+ # Given that the row identifiers are simply numerical indices (1, 2, 3, etc) rather than
106
+ # recognizable gene symbols like BRCA1, TP53, etc., we need to perform gene mapping
107
+ requires_gene_mapping = True
108
+ # Extract gene annotation data with proper handling
109
+ filtered_lines = []
110
+ with gzip.open(soft_file, 'rt') as f:
111
+ for line in f:
112
+ if not any(line.startswith(prefix) for prefix in ['^', '!', '#']):
113
+ filtered_lines.append(line.strip())
114
+
115
+ # Preview the structure of filtered lines
116
+ print("Sample of filtered lines:")
117
+ for line in filtered_lines[:5]:
118
+ print(line)
119
+
120
+ if filtered_lines:
121
+ # Try to create DataFrame from filtered lines
122
+ try:
123
+ df_text = '\n'.join(filtered_lines)
124
+ gene_metadata = pd.read_csv(io.StringIO(df_text), sep='\t',
125
+ engine='python', on_bad_lines='skip')
126
+ print("\nColumn names:")
127
+ print(gene_metadata.columns)
128
+ print("\nPreview:")
129
+ print(preview_df(gene_metadata))
130
+ except Exception as e:
131
+ print(f"Error creating DataFrame: {str(e)}")
132
+ # The gene expression data uses numerical IDs that match the 'ID' column in gene annotation
133
+ # The 'GeneSymbol' column contains the gene symbols we want to map to
134
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GeneSymbol')
135
+
136
+ # Apply gene mapping to convert probe-level data to gene expression data
137
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
138
+
139
+ # Print shape and preview to verify the mapping
140
+ print("Gene expression data shape:", gene_data.shape)
141
+ print("\nPreview of first few rows and columns:")
142
+ print(gene_data.head().iloc[:, :5])
143
+ # 1. Normalize gene symbols and save
144
+ gene_data = normalize_gene_symbols_in_index(gene_data)
145
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
146
+ gene_data.to_csv(out_gene_data_file)
147
+
148
+ # 2. Link clinical and genetic data
149
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
150
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
151
+
152
+ # 3. Handle missing values
153
+ linked_data = handle_missing_values(linked_data, trait)
154
+
155
+ # 4. Check for biased features
156
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
157
+
158
+ # 5. Final validation and metadata saving
159
+ is_usable = validate_and_save_cohort_info(
160
+ is_final=True,
161
+ cohort=cohort,
162
+ info_path=json_path,
163
+ is_gene_available=True,
164
+ is_trait_available=True,
165
+ is_biased=trait_biased,
166
+ df=linked_data,
167
+ note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
168
+ )
169
+
170
+ # 6. Save linked data if usable
171
+ if is_usable:
172
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
173
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometrioid_Cancer/code/GSE94523.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE94523"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE94523"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE94523.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE94523.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE94523.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # Check gene availability
33
+ # From series title and summary, we can see it's a microarray expression dataset
34
+ is_gene_available = True
35
+
36
+ # Analyze the availability of variables
37
+ # The dictionary shows all samples are "endometrioid adenocarcinoma" in row 0
38
+ # This can be used as trait data (binary: case vs control), all samples are cases
39
+ trait_row = 0
40
+
41
+ # No age or gender information available
42
+ age_row = None
43
+ gender_row = None
44
+
45
+ # Define conversion functions
46
+ def convert_trait(value: str) -> int:
47
+ """Convert trait values to binary (0: control, 1: case)"""
48
+ if "endometrioid adenocarcinoma" in value.lower():
49
+ return 1
50
+ elif value.strip() == "":
51
+ return None
52
+ return 0
53
+
54
+ # No conversion functions needed for unavailable data
55
+ convert_age = None
56
+ convert_gender = None
57
+
58
+ # Save metadata about data availability
59
+ is_usable = validate_and_save_cohort_info(is_final=False,
60
+ cohort=cohort,
61
+ info_path=json_path,
62
+ is_gene_available=is_gene_available,
63
+ is_trait_available=(trait_row is not None))
64
+
65
+ # Extract clinical features if available
66
+ if trait_row is not None:
67
+ selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
68
+ trait=trait,
69
+ trait_row=trait_row,
70
+ convert_trait=convert_trait,
71
+ age_row=age_row,
72
+ convert_age=convert_age,
73
+ gender_row=gender_row,
74
+ convert_gender=convert_gender)
75
+
76
+ # Preview the processed data
77
+ preview = preview_df(selected_clinical_df)
78
+
79
+ # Save to CSV
80
+ selected_clinical_df.to_csv(out_clinical_data_file)
81
+ # Extract gene expression data from matrix file
82
+ genetic_df = get_genetic_data(matrix_file)
83
+
84
+ # Print DataFrame shape and first 20 row IDs
85
+ print("DataFrame shape:", genetic_df.shape)
86
+ print("\nFirst 20 row IDs:")
87
+ print(genetic_df.index[:20])
88
+
89
+ print("\nPreview of first few rows and columns:")
90
+ print(genetic_df.head().iloc[:, :5])
91
+ # The row IDs are numbers (non-gene identifiers) which will need to be mapped to actual gene symbols
92
+ requires_gene_mapping = True
93
+ # Extract gene annotation data, excluding control probe lines
94
+ gene_metadata = get_gene_annotation(soft_file)
95
+
96
+ # Preview filtered annotation data
97
+ print("Column names:")
98
+ print(gene_metadata.columns)
99
+ print("\nPreview of gene annotation data:")
100
+ print(preview_df(gene_metadata))
101
+ # Extract gene mapping information using ID and HUGO columns
102
+ mapping_df = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='HUGO')
103
+
104
+ # Apply gene mapping to convert probe-level data to gene expression data
105
+ gene_data = apply_gene_mapping(genetic_df, mapping_df)
106
+
107
+ # Preview mapping results
108
+ print("Original data shape:", genetic_df.shape)
109
+ print("Mapped data shape:", gene_data.shape)
110
+ print("\nFirst few rows and columns of mapped data:")
111
+ print(gene_data.head().iloc[:, :5])
112
+ # 1. Normalize gene symbols and save
113
+ gene_data = normalize_gene_symbols_in_index(gene_data)
114
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
115
+ gene_data.to_csv(out_gene_data_file)
116
+
117
+ # 2. Link clinical and genetic data
118
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
119
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
120
+
121
+ # 3. Handle missing values
122
+ linked_data = handle_missing_values(linked_data, trait)
123
+
124
+ # 4. Check for biased features
125
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
126
+
127
+ # 5. Final validation and metadata saving
128
+ is_usable = validate_and_save_cohort_info(
129
+ is_final=True,
130
+ cohort=cohort,
131
+ info_path=json_path,
132
+ is_gene_available=True,
133
+ is_trait_available=True,
134
+ is_biased=trait_biased,
135
+ df=linked_data,
136
+ note="Study comparing ERα-chromatin interactions in endometrial tumors from patients with/without tamoxifen treatment history"
137
+ )
138
+
139
+ # 6. Save linked data if usable
140
+ if is_usable:
141
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
142
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometrioid_Cancer/code/GSE94524.py ADDED
@@ -0,0 +1,151 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+ cohort = "GSE94524"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
10
+ in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE94524"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE94524.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE94524.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE94524.csv"
16
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
17
+
18
+ # Get paths to the SOFT and matrix files
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Get background info and clinical data from matrix file
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values for each feature (row) in clinical data
25
+ unique_values_dict = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("=== Dataset Background Information ===")
29
+ print(background_info)
30
+ print("\n=== Sample Characteristics ===")
31
+ print(json.dumps(unique_values_dict, indent=2))
32
+ # Step 1: Gene Expression Data Availability
33
+ # From title, this appears to be a gene expression dataset studying tamoxifen-associated endometrial tumors
34
+ is_gene_available = True
35
+
36
+ # Step 2: Variable Availability and Data Type Conversion
37
+ # From characteristics dict, all samples are endometrioid adenocarcinoma (trait=1)
38
+ trait_row = 0
39
+ age_row = None # Age data not available
40
+ gender_row = None # Gender data not available, but since endometrial cancer, we know all patients are female
41
+
42
+ def convert_trait(value: str) -> int:
43
+ """Convert trait value to binary (0 for normal/control, 1 for endometrioid cancer)"""
44
+ if not value or ':' not in value:
45
+ return None
46
+ value = value.split(':')[1].strip().lower()
47
+ if 'endometrioid' in value and 'adenocarcinoma' in value:
48
+ return 1
49
+ return None
50
+
51
+ # Age conversion function not needed since age data unavailable
52
+ convert_age = None
53
+
54
+ # Gender conversion function not needed since gender data unavailable
55
+ convert_gender = None
56
+
57
+ # Step 3: Save metadata
58
+ is_trait_available = trait_row is not None
59
+ validate_and_save_cohort_info(
60
+ is_final=False,
61
+ cohort=cohort,
62
+ info_path=json_path,
63
+ is_gene_available=is_gene_available,
64
+ is_trait_available=is_trait_available
65
+ )
66
+
67
+ # Step 4: Clinical Feature Extraction
68
+ if trait_row is not None:
69
+ selected_clinical_df = geo_select_clinical_features(
70
+ clinical_df=clinical_data,
71
+ trait=trait,
72
+ trait_row=trait_row,
73
+ convert_trait=convert_trait,
74
+ age_row=age_row,
75
+ convert_age=convert_age,
76
+ gender_row=gender_row,
77
+ convert_gender=convert_gender
78
+ )
79
+
80
+ # Preview the selected features
81
+ preview = preview_df(selected_clinical_df)
82
+ print("Preview of selected clinical features:")
83
+ print(preview)
84
+
85
+ # Save clinical data
86
+ selected_clinical_df.to_csv(out_clinical_data_file)
87
+ # Extract gene expression data from matrix file
88
+ genetic_df = get_genetic_data(matrix_file)
89
+
90
+ # Print DataFrame shape and first 20 row IDs
91
+ print("DataFrame shape:", genetic_df.shape)
92
+ print("\nFirst 20 row IDs:")
93
+ print(genetic_df.index[:20])
94
+
95
+ print("\nPreview of first few rows and columns:")
96
+ print(genetic_df.head().iloc[:, :5])
97
+ # The gene identifiers appear to be just row numbers (1, 2, 3, etc.)
98
+ # This indicates they need to be mapped to actual human gene symbols
99
+ requires_gene_mapping = True
100
+ # Extract gene annotation data, excluding control probe lines
101
+ gene_metadata = get_gene_annotation(soft_file)
102
+
103
+ # Preview filtered annotation data
104
+ print("Column names:")
105
+ print(gene_metadata.columns)
106
+ print("\nPreview of gene annotation data:")
107
+ print(preview_df(gene_metadata))
108
+ # From the preview, we can see that 'ID' column matches the gene expression row IDs,
109
+ # and 'HUGO' column contains the gene symbols
110
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='HUGO')
111
+
112
+ # Apply gene mapping to convert probe-level data to gene expression data
113
+ gene_data = apply_gene_mapping(genetic_df, mapping_data)
114
+
115
+ # Preview the mapped gene expression data
116
+ print("Gene expression data shape after mapping:", gene_data.shape)
117
+ print("\nFirst few gene symbols:")
118
+ print(gene_data.index[:10])
119
+ print("\nPreview of first few rows and columns:")
120
+ print(gene_data.head().iloc[:, :5])
121
+ # 1. Normalize gene symbols and save
122
+ gene_data = normalize_gene_symbols_in_index(gene_data)
123
+ os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
124
+ gene_data.to_csv(out_gene_data_file)
125
+
126
+ # 2. Link clinical and genetic data
127
+ clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
128
+ linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
129
+
130
+ # 3. Handle missing values
131
+ linked_data = handle_missing_values(linked_data, trait)
132
+
133
+ # 4. Check for biased features
134
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
135
+
136
+ # 5. Final validation and metadata saving
137
+ is_usable = validate_and_save_cohort_info(
138
+ is_final=True,
139
+ cohort=cohort,
140
+ info_path=json_path,
141
+ is_gene_available=True,
142
+ is_trait_available=True,
143
+ is_biased=trait_biased,
144
+ df=linked_data,
145
+ note="Study comparing gene expression in healthy vs DMD myoblasts and myotubes, including immortalized cell lines"
146
+ )
147
+
148
+ # 6. Save linked data if usable
149
+ if is_usable:
150
+ os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
151
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometrioid_Cancer/code/TCGA.py ADDED
@@ -0,0 +1,80 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometrioid_Cancer"
6
+
7
+ # Input paths
8
+ tcga_root_dir = "../DATA/TCGA"
9
+
10
+ # Output paths
11
+ out_data_file = "./output/preprocess/3/Endometrioid_Cancer/TCGA.csv"
12
+ out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/TCGA.csv"
13
+ out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/TCGA.csv"
14
+ json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
15
+
16
+ # First list available directories to verify
17
+ print("Available directories in TCGA root:")
18
+ tcga_dirs = os.listdir(tcga_root_dir)
19
+ print(tcga_dirs)
20
+
21
+ # Get Endometrioid Cancer cohort directory path (UCEC = Uterine Corpus Endometrial Carcinoma)
22
+ cohort_name = "TCGA.UCEC.sampleMap" # Directory containing endometrial cancer data
23
+ cohort_dir = os.path.join(tcga_root_dir, cohort_name)
24
+
25
+ # Get clinical and genetic file paths
26
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
27
+
28
+ # Load clinical and genetic data
29
+ clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
30
+ genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
31
+
32
+ # Print clinical data columns for analysis
33
+ print("\nClinical data columns:")
34
+ print(clinical_df.columns.tolist())
35
+
36
+ # Record data availability in metadata
37
+ validate_and_save_cohort_info(
38
+ is_final=False,
39
+ cohort="TCGA",
40
+ info_path=json_path,
41
+ is_gene_available=len(genetic_df.columns) > 0,
42
+ is_trait_available=True # Since we found the endometrial cancer directory
43
+ )
44
+ # First verify the root directory exists and print contents
45
+ print(f"TCGA root directory path: {tcga_root_dir}")
46
+ if os.path.exists(tcga_root_dir):
47
+ print("Directory exists. Contents:", os.listdir(tcga_root_dir))
48
+
49
+ # Get Endometrioid Cancer cohort directory path
50
+ cohort_dir = os.path.join(tcga_root_dir, "TCGA_Endometrioid_Cancer_(UCEC)")
51
+
52
+ # Get clinical and genetic file paths
53
+ clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
54
+
55
+ # Load clinical and genetic data
56
+ clinical_df = pd.read_csv(clinical_file, sep='\t', index_col=0)
57
+ genetic_df = pd.read_csv(genetic_file, sep='\t', index_col=0)
58
+
59
+ # Print clinical data columns for analysis
60
+ print("\nClinical data columns:")
61
+ print(clinical_df.columns.tolist())
62
+
63
+ # Record data availability in metadata
64
+ validate_and_save_cohort_info(
65
+ is_final=False,
66
+ cohort="TCGA",
67
+ info_path=json_path,
68
+ is_gene_available=len(genetic_df.columns) > 0,
69
+ is_trait_available=True # Since we're using the endometrial cancer directory
70
+ )
71
+ else:
72
+ print("Directory does not exist")
73
+ # Record unavailability in metadata
74
+ validate_and_save_cohort_info(
75
+ is_final=False,
76
+ cohort="TCGA",
77
+ info_path=json_path,
78
+ is_gene_available=False,
79
+ is_trait_available=False
80
+ )
p3/preprocess/Endometrioid_Cancer/gene_data/GSE120490.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7c2759aa8e42735d02ef9d461e653d8193afbf79f2bc172dbf0a1ffec969bbfd
3
+ size 38249974
p3/preprocess/Endometrioid_Cancer/gene_data/GSE40785.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Endometrioid_Cancer/gene_data/GSE65986.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Endometrioid_Cancer/gene_data/GSE66667.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Endometrioid_Cancer/gene_data/GSE68600.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Endometrioid_Cancer/gene_data/GSE73551.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:521c3184f53a970bae9c21a469f19dc9d3761202131547c1bef3be922fb6503f
3
+ size 14281959
p3/preprocess/Endometrioid_Cancer/gene_data/GSE73614.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:e45d32982c211ae3a56be67d5131dbbaefa8c1560f35b0bd1381ff6ec451edd8
3
+ size 19634770
p3/preprocess/Endometrioid_Cancer/gene_data/GSE73637.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:416bb1415b27d7882b217774b01fc753d242a57a9495b25c8dc86a0f4c5f6b9a
3
+ size 14862301
p3/preprocess/Endometrioid_Cancer/gene_data/GSE94523.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:352341ce6b29bbe1700a51cd194f34af307b19981a3430d59ec2a9a4c8d2ea05
3
+ size 11167357
p3/preprocess/Endometrioid_Cancer/gene_data/GSE94524.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:352341ce6b29bbe1700a51cd194f34af307b19981a3430d59ec2a9a4c8d2ea05
3
+ size 11167357
p3/preprocess/Endometriosis/GSE120103.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Endometriosis/GSE145701.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7571001f605611c444f25915fbc48d639e331f55782070cc7128e82be9c1c0b3
3
+ size 16391875
p3/preprocess/Endometriosis/GSE145702.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:7571001f605611c444f25915fbc48d639e331f55782070cc7128e82be9c1c0b3
3
+ size 16391875
p3/preprocess/Endometriosis/GSE37837.csv ADDED
The diff for this file is too large to render. See raw diff
 
p3/preprocess/Endometriosis/GSE51981.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ version https://git-lfs.github.com/spec/v1
2
+ oid sha256:de007696482bc115aece4bc25168f6fac723e93985ece506a35b5404f174bcd9
3
+ size 38974242
p3/preprocess/Endometriosis/clinical_data/GSE111974.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM3045867,GSM3045868,GSM3045869,GSM3045870,GSM3045871,GSM3045872,GSM3045873,GSM3045874,GSM3045875,GSM3045876,GSM3045877,GSM3045878,GSM3045879,GSM3045880,GSM3045881,GSM3045882,GSM3045883,GSM3045884,GSM3045885,GSM3045886,GSM3045887,GSM3045888,GSM3045889,GSM3045890,GSM3045891,GSM3045892,GSM3045893,GSM3045894,GSM3045895,GSM3045896,GSM3045897,GSM3045898,GSM3045899,GSM3045900,GSM3045901,GSM3045902,GSM3045903,GSM3045904,GSM3045905,GSM3045906,GSM3045907,GSM3045908,GSM3045909,GSM3045910,GSM3045911,GSM3045912,GSM3045913,GSM3045914
2
+ Endometriosis,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
p3/preprocess/Endometriosis/clinical_data/GSE120103.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM3393491,GSM3393492,GSM3393493,GSM3393494,GSM3393495,GSM3393496,GSM3393497,GSM3393498,GSM3393499,GSM3393500,GSM3393501,GSM3393502,GSM3393503,GSM3393504,GSM3393505,GSM3393506,GSM3393507,GSM3393508,GSM3393509,GSM3393510,GSM3393511,GSM3393512,GSM3393513,GSM3393514,GSM3393515,GSM3393516,GSM3393517,GSM3393518,GSM3393519,GSM3393520,GSM3393521,GSM3393522,GSM3393523,GSM3393524,GSM3393525,GSM3393526
2
+ Endometriosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Gender,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
p3/preprocess/Endometriosis/clinical_data/GSE138297.csv ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ ,GSM4104672,GSM4104673,GSM4104674,GSM4104675,GSM4104676,GSM4104677,GSM4104678,GSM4104679,GSM4104680,GSM4104681,GSM4104682,GSM4104683,GSM4104684,GSM4104685,GSM4104686,GSM4104687,GSM4104688,GSM4104689,GSM4104690,GSM4104691,GSM4104692,GSM4104693,GSM4104694,GSM4104695,GSM4104696,GSM4104697,GSM4104698,GSM4104699,GSM4104700,GSM4104701,GSM4104702,GSM4104703,GSM4104704,GSM4104705,GSM4104706,GSM4104707,GSM4104708,GSM4104709,GSM4104710,GSM4104711,GSM4104712,GSM4104713,GSM4104714,GSM4104715,GSM4104716
2
+ Endometriosis,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0
3
+ Age,49.0,49.0,49.0,21.0,21.0,21.0,31.0,31.0,31.0,59.0,59.0,59.0,40.0,40.0,40.0,33.0,33.0,33.0,28.0,28.0,28.0,40.0,40.0,40.0,36.0,36.0,36.0,50.0,50.0,50.0,27.0,27.0,27.0,23.0,23.0,23.0,50.0,50.0,50.0,32.0,32.0,32.0,38.0,38.0,38.0
4
+ Gender,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0
p3/preprocess/Endometriosis/clinical_data/GSE145701.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4331199,GSM4331200,GSM4331201,GSM4331202,GSM4331203,GSM4331204,GSM4331205,GSM4331206,GSM4331207,GSM4331208,GSM4331209,GSM4331210,GSM4331211,GSM4331212,GSM4331213,GSM4331214,GSM4331215,GSM4331216,GSM4331217,GSM4331218,GSM4331219,GSM4331220,GSM4331221,GSM4331222,GSM4331223,GSM4331224,GSM4331225,GSM4331226,GSM4331227,GSM4331228,GSM4331229,GSM4331230,GSM4331231,GSM4331232,GSM4331233,GSM4331234,GSM4331235,GSM4331236,GSM4331237,GSM4331238,GSM4331239,GSM4331240,GSM4331241,GSM4331242,GSM4331243,GSM4331244,GSM4331245,GSM4331246
2
+ Endometriosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Endometriosis/clinical_data/GSE145702.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM4331199,GSM4331200,GSM4331201,GSM4331202,GSM4331203,GSM4331204,GSM4331205,GSM4331206,GSM4331207,GSM4331208,GSM4331209,GSM4331210,GSM4331211,GSM4331212,GSM4331213,GSM4331214,GSM4331215,GSM4331216,GSM4331217,GSM4331218,GSM4331219,GSM4331220,GSM4331221,GSM4331222,GSM4331223,GSM4331224,GSM4331225,GSM4331226,GSM4331227,GSM4331228,GSM4331229,GSM4331230,GSM4331231,GSM4331232,GSM4331233,GSM4331234,GSM4331235,GSM4331236,GSM4331237,GSM4331238,GSM4331239,GSM4331240,GSM4331241,GSM4331242,GSM4331243,GSM4331244,GSM4331245,GSM4331246
2
+ Endometriosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Endometriosis/clinical_data/GSE165004.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM5024320,GSM5024321,GSM5024322,GSM5024323,GSM5024324,GSM5024325,GSM5024326,GSM5024327,GSM5024328,GSM5024329,GSM5024330,GSM5024331,GSM5024332,GSM5024333,GSM5024334,GSM5024335,GSM5024336,GSM5024337,GSM5024338,GSM5024339,GSM5024340,GSM5024341,GSM5024342,GSM5024343,GSM5024344,GSM5024345,GSM5024346,GSM5024347,GSM5024348,GSM5024349,GSM5024350,GSM5024351,GSM5024352,GSM5024353,GSM5024354,GSM5024355,GSM5024356,GSM5024357,GSM5024358,GSM5024359,GSM5024360,GSM5024361,GSM5024362,GSM5024363,GSM5024364,GSM5024365,GSM5024366,GSM5024367,GSM5024368,GSM5024369,GSM5024370,GSM5024371,GSM5024372,GSM5024373,GSM5024374,GSM5024375,GSM5024376,GSM5024377,GSM5024378,GSM5024379,GSM5024380,GSM5024381,GSM5024382,GSM5024383,GSM5024384,GSM5024385,GSM5024386,GSM5024387,GSM5024388,GSM5024389,GSM5024390,GSM5024391
2
+ Endometriosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
p3/preprocess/Endometriosis/clinical_data/GSE37837.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM928779,GSM928780,GSM928781,GSM928782,GSM928783,GSM928784,GSM928785,GSM928786,GSM928787,GSM928788,GSM928789,GSM928790,GSM928791,GSM928792,GSM928793,GSM928794,GSM928795,GSM928796,GSM928797,GSM928798,GSM928799,GSM928800,GSM928801,GSM928802,GSM928803,GSM928804,GSM928805,GSM928806,GSM928807,GSM928808,GSM928809,GSM928810,GSM928811,GSM928812,GSM928813,GSM928814
2
+ Endometriosis,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0
3
+ Age,29.0,29.0,40.0,40.0,33.0,33.0,45.0,45.0,24.0,24.0,38.0,38.0,28.0,28.0,25.0,25.0,40.0,40.0,31.0,31.0,37.0,37.0,30.0,30.0,30.0,30.0,37.0,37.0,31.0,31.0,34.0,34.0,25.0,25.0,40.0,40.0
p3/preprocess/Endometriosis/clinical_data/GSE51981.csv ADDED
@@ -0,0 +1,2 @@
 
 
 
1
+ ,GSM1256653,GSM1256654,GSM1256655,GSM1256656,GSM1256657,GSM1256658,GSM1256659,GSM1256660,GSM1256661,GSM1256662,GSM1256663,GSM1256664,GSM1256665,GSM1256666,GSM1256667,GSM1256668,GSM1256669,GSM1256670,GSM1256671,GSM1256672,GSM1256673,GSM1256674,GSM1256675,GSM1256676,GSM1256677,GSM1256678,GSM1256679,GSM1256680,GSM1256681,GSM1256682,GSM1256683,GSM1256684,GSM1256685,GSM1256686,GSM1256687,GSM1256688,GSM1256689,GSM1256690,GSM1256691,GSM1256692,GSM1256693,GSM1256694,GSM1256695,GSM1256696,GSM1256697,GSM1256698,GSM1256699,GSM1256700,GSM1256701,GSM1256702,GSM1256703,GSM1256704,GSM1256705,GSM1256706,GSM1256707,GSM1256708,GSM1256709,GSM1256710,GSM1256711,GSM1256712,GSM1256713,GSM1256714,GSM1256715,GSM1256716,GSM1256717,GSM1256718,GSM1256719,GSM1256720,GSM1256721,GSM1256722,GSM1256723,GSM1256724,GSM1256725,GSM1256726,GSM1256727,GSM1256728,GSM1256729,GSM1256730,GSM1256731,GSM1256732,GSM1256733,GSM1256734,GSM1256735,GSM1256736,GSM1256737,GSM1256738,GSM1256739,GSM1256740,GSM1256741,GSM1256742,GSM1256743,GSM1256744,GSM1256745,GSM1256746,GSM1256747,GSM1256748,GSM1256749,GSM1256750,GSM1256751,GSM1256752,GSM1256753,GSM1256754,GSM1256755,GSM1256756,GSM1256757,GSM1256758,GSM1256759,GSM1256760,GSM1256761,GSM1256762,GSM1256763,GSM1256764,GSM1256765,GSM1256766,GSM1256767,GSM1256768,GSM1256769,GSM1256770,GSM1256771,GSM1256772,GSM1256773,GSM1256774,GSM1256775,GSM1256776,GSM1256777,GSM1256778,GSM1256779,GSM1256780,GSM1256781,GSM1256782,GSM1256783,GSM1256784,GSM1256785,GSM1256786,GSM1256787,GSM1256788,GSM1256789,GSM1256790,GSM1256791,GSM1256792,GSM1256793,GSM1256794,GSM1256795,GSM1256796,GSM1256797,GSM1256798,GSM1256799,GSM1256800
2
+ Endometriosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
p3/preprocess/Endometriosis/clinical_data/GSE73622.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM1899589,GSM1899590,GSM1899591,GSM1899592,GSM1899593,GSM1899594,GSM1899595,GSM1899596,GSM1899597,GSM1899598,GSM1899599,GSM1899600,GSM1899601,GSM1899602,GSM1899603,GSM1899604,GSM1899605,GSM1899606,GSM1899607,GSM1899608,GSM1899609,GSM1899610,GSM1899611,GSM1899612,GSM1899613,GSM1899614,GSM1899615,GSM1899616,GSM1899617,GSM1899618,GSM1899619,GSM1899620,GSM1899621,GSM1899622,GSM1899623,GSM1899624,GSM1899625,GSM1899626,GSM1899627,GSM1899628,GSM1899629,GSM1899630,GSM1899631,GSM1899632,GSM1899633,GSM1899634,GSM1899635,GSM1899636,GSM1899637,GSM1899638
2
+ Endometriosis,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
3
+ Age,29.0,39.0,47.0,35.0,50.0,27.0,21.0,31.0,26.0,29.0,29.0,36.0,31.0,47.0,35.0,24.0,28.0,28.0,41.0,29.0,31.0,36.0,47.0,24.0,28.0,27.0,21.0,29.0,31.0,36.0,28.0,27.0,28.0,21.0,29.0,31.0,36.0,47.0,24.0,28.0,28.0,21.0,29.0,31.0,36.0,47.0,24.0,28.0,28.0,21.0
p3/preprocess/Endometriosis/clinical_data/GSE75427.csv ADDED
@@ -0,0 +1,3 @@
 
 
 
 
1
+ ,GSM1954914,GSM1954915,GSM1954916,GSM1954917,GSM1954918,GSM1954919,GSM1954920,GSM1954921
2
+ Endometriosis,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
3
+ Age,37.0,47.0,53.0,41.0,37.0,47.0,53.0,41.0
p3/preprocess/Endometriosis/clinical_data/TCGA.csv ADDED
@@ -0,0 +1,597 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ sampleID,Endometriosis,Age,Gender
2
+ TCGA-2E-A9G8-01,1,59.0,0.0
3
+ TCGA-4E-A92E-01,1,54.0,0.0
4
+ TCGA-5B-A90C-01,1,69.0,0.0
5
+ TCGA-5S-A9Q8-01,1,51.0,0.0
6
+ TCGA-A5-A0G1-01,1,67.0,0.0
7
+ TCGA-A5-A0G2-01,1,57.0,0.0
8
+ TCGA-A5-A0G3-01,1,61.0,0.0
9
+ TCGA-A5-A0G5-01,1,73.0,0.0
10
+ TCGA-A5-A0G9-01,1,79.0,0.0
11
+ TCGA-A5-A0GA-01,1,67.0,0.0
12
+ TCGA-A5-A0GB-01,1,65.0,0.0
13
+ TCGA-A5-A0GD-01,1,75.0,0.0
14
+ TCGA-A5-A0GE-01,1,38.0,0.0
15
+ TCGA-A5-A0GG-01,1,76.0,0.0
16
+ TCGA-A5-A0GH-01,1,57.0,0.0
17
+ TCGA-A5-A0GI-01,1,63.0,0.0
18
+ TCGA-A5-A0GJ-01,1,44.0,0.0
19
+ TCGA-A5-A0GM-01,1,53.0,0.0
20
+ TCGA-A5-A0GN-01,1,65.0,0.0
21
+ TCGA-A5-A0GP-01,1,58.0,0.0
22
+ TCGA-A5-A0GQ-01,1,76.0,0.0
23
+ TCGA-A5-A0GR-01,1,69.0,0.0
24
+ TCGA-A5-A0GU-01,1,58.0,0.0
25
+ TCGA-A5-A0GV-01,1,67.0,0.0
26
+ TCGA-A5-A0GW-01,1,46.0,0.0
27
+ TCGA-A5-A0GX-01,1,53.0,0.0
28
+ TCGA-A5-A0R6-01,1,64.0,0.0
29
+ TCGA-A5-A0R7-01,1,55.0,0.0
30
+ TCGA-A5-A0R8-01,1,81.0,0.0
31
+ TCGA-A5-A0R9-01,1,51.0,0.0
32
+ TCGA-A5-A0RA-01,1,68.0,0.0
33
+ TCGA-A5-A0VO-01,1,64.0,0.0
34
+ TCGA-A5-A0VP-01,1,74.0,0.0
35
+ TCGA-A5-A0VQ-01,1,62.0,0.0
36
+ TCGA-A5-A1OF-01,1,47.0,0.0
37
+ TCGA-A5-A1OG-01,1,65.0,0.0
38
+ TCGA-A5-A1OH-01,1,86.0,0.0
39
+ TCGA-A5-A1OJ-01,1,31.0,0.0
40
+ TCGA-A5-A1OK-01,1,63.0,0.0
41
+ TCGA-A5-A2K2-01,1,77.0,0.0
42
+ TCGA-A5-A2K3-01,1,68.0,0.0
43
+ TCGA-A5-A2K4-01,1,69.0,0.0
44
+ TCGA-A5-A2K5-01,1,76.0,0.0
45
+ TCGA-A5-A2K7-01,1,41.0,0.0
46
+ TCGA-A5-A3LO-01,1,64.0,0.0
47
+ TCGA-A5-A3LP-01,1,74.0,0.0
48
+ TCGA-A5-A7WJ-01,1,64.0,0.0
49
+ TCGA-A5-A7WK-01,1,71.0,0.0
50
+ TCGA-A5-AB3J-01,1,52.0,0.0
51
+ TCGA-AJ-A23M-01,1,61.0,0.0
52
+ TCGA-AJ-A23N-01,1,70.0,0.0
53
+ TCGA-AJ-A23O-01,1,69.0,0.0
54
+ TCGA-AJ-A2QK-01,1,65.0,0.0
55
+ TCGA-AJ-A2QL-01,1,60.0,0.0
56
+ TCGA-AJ-A2QL-11,0,60.0,0.0
57
+ TCGA-AJ-A2QM-01,1,67.0,0.0
58
+ TCGA-AJ-A2QN-01,1,60.0,0.0
59
+ TCGA-AJ-A2QO-01,1,85.0,0.0
60
+ TCGA-AJ-A3BD-01,1,57.0,0.0
61
+ TCGA-AJ-A3BF-01,1,65.0,0.0
62
+ TCGA-AJ-A3BG-01,1,65.0,0.0
63
+ TCGA-AJ-A3BH-01,1,,0.0
64
+ TCGA-AJ-A3BI-01,1,67.0,0.0
65
+ TCGA-AJ-A3BK-01,1,68.0,0.0
66
+ TCGA-AJ-A3EJ-01,1,74.0,0.0
67
+ TCGA-AJ-A3EK-01,1,53.0,0.0
68
+ TCGA-AJ-A3EL-01,1,47.0,0.0
69
+ TCGA-AJ-A3EM-01,1,69.0,0.0
70
+ TCGA-AJ-A3I9-01,1,52.0,0.0
71
+ TCGA-AJ-A3IA-01,1,77.0,0.0
72
+ TCGA-AJ-A3NC-01,1,63.0,0.0
73
+ TCGA-AJ-A3NC-11,0,63.0,0.0
74
+ TCGA-AJ-A3NE-01,1,46.0,0.0
75
+ TCGA-AJ-A3NE-11,0,46.0,0.0
76
+ TCGA-AJ-A3NF-01,1,60.0,0.0
77
+ TCGA-AJ-A3NG-01,1,83.0,0.0
78
+ TCGA-AJ-A3NH-01,1,90.0,0.0
79
+ TCGA-AJ-A3NH-11,0,90.0,0.0
80
+ TCGA-AJ-A3OJ-01,1,54.0,0.0
81
+ TCGA-AJ-A3OK-01,1,73.0,0.0
82
+ TCGA-AJ-A3OL-01,1,55.0,0.0
83
+ TCGA-AJ-A3QS-01,1,57.0,0.0
84
+ TCGA-AJ-A3TW-01,1,78.0,0.0
85
+ TCGA-AJ-A4ZG-01,1,53.0,0.0
86
+ TCGA-AJ-A5DV-01,1,65.0,0.0
87
+ TCGA-AJ-A5DW-01,1,56.0,0.0
88
+ TCGA-AJ-A6NU-01,1,64.0,0.0
89
+ TCGA-AJ-A8CT-01,1,58.0,0.0
90
+ TCGA-AJ-A8CV-01,1,58.0,0.0
91
+ TCGA-AJ-A8CW-01,1,64.0,0.0
92
+ TCGA-AP-A051-01,1,69.0,0.0
93
+ TCGA-AP-A052-01,1,59.0,0.0
94
+ TCGA-AP-A053-01,1,90.0,0.0
95
+ TCGA-AP-A054-01,1,64.0,0.0
96
+ TCGA-AP-A056-01,1,64.0,0.0
97
+ TCGA-AP-A059-01,1,69.0,0.0
98
+ TCGA-AP-A05A-01,1,81.0,0.0
99
+ TCGA-AP-A05D-01,1,67.0,0.0
100
+ TCGA-AP-A05H-01,1,75.0,0.0
101
+ TCGA-AP-A05J-01,1,66.0,0.0
102
+ TCGA-AP-A05N-01,1,58.0,0.0
103
+ TCGA-AP-A05O-01,1,68.0,0.0
104
+ TCGA-AP-A05P-01,1,54.0,0.0
105
+ TCGA-AP-A0L8-01,1,70.0,0.0
106
+ TCGA-AP-A0L9-01,1,71.0,0.0
107
+ TCGA-AP-A0LD-01,1,63.0,0.0
108
+ TCGA-AP-A0LE-01,1,57.0,0.0
109
+ TCGA-AP-A0LF-01,1,82.0,0.0
110
+ TCGA-AP-A0LG-01,1,54.0,0.0
111
+ TCGA-AP-A0LH-01,1,60.0,0.0
112
+ TCGA-AP-A0LI-01,1,67.0,0.0
113
+ TCGA-AP-A0LJ-01,1,42.0,0.0
114
+ TCGA-AP-A0LL-01,1,56.0,0.0
115
+ TCGA-AP-A0LM-01,1,33.0,0.0
116
+ TCGA-AP-A0LN-01,1,56.0,0.0
117
+ TCGA-AP-A0LO-01,1,45.0,0.0
118
+ TCGA-AP-A0LP-01,1,76.0,0.0
119
+ TCGA-AP-A0LQ-01,1,59.0,0.0
120
+ TCGA-AP-A0LS-01,1,63.0,0.0
121
+ TCGA-AP-A0LT-01,1,57.0,0.0
122
+ TCGA-AP-A0LV-01,1,39.0,0.0
123
+ TCGA-AP-A1DH-01,1,62.0,0.0
124
+ TCGA-AP-A1DK-01,1,53.0,0.0
125
+ TCGA-AP-A1DM-01,1,60.0,0.0
126
+ TCGA-AP-A1DO-01,1,62.0,0.0
127
+ TCGA-AP-A1DP-01,1,70.0,0.0
128
+ TCGA-AP-A1DQ-01,1,76.0,0.0
129
+ TCGA-AP-A1DR-01,1,59.0,0.0
130
+ TCGA-AP-A1DV-01,1,59.0,0.0
131
+ TCGA-AP-A1E0-01,1,40.0,0.0
132
+ TCGA-AP-A1E1-01,1,74.0,0.0
133
+ TCGA-AP-A1E3-01,1,45.0,0.0
134
+ TCGA-AP-A1E4-01,1,54.0,0.0
135
+ TCGA-AP-A3K1-01,1,56.0,0.0
136
+ TCGA-AP-A5FX-01,1,68.0,0.0
137
+ TCGA-AW-A1PO-01,1,66.0,0.0
138
+ TCGA-AX-A05S-01,1,81.0,0.0
139
+ TCGA-AX-A05T-01,1,82.0,0.0
140
+ TCGA-AX-A05U-01,1,56.0,0.0
141
+ TCGA-AX-A05W-01,1,60.0,0.0
142
+ TCGA-AX-A05Y-01,1,57.0,0.0
143
+ TCGA-AX-A05Y-11,0,57.0,0.0
144
+ TCGA-AX-A05Z-01,1,37.0,0.0
145
+ TCGA-AX-A060-01,1,77.0,0.0
146
+ TCGA-AX-A062-01,1,53.0,0.0
147
+ TCGA-AX-A063-01,1,63.0,0.0
148
+ TCGA-AX-A064-01,1,81.0,0.0
149
+ TCGA-AX-A06B-01,1,72.0,0.0
150
+ TCGA-AX-A06D-01,1,82.0,0.0
151
+ TCGA-AX-A06F-01,1,59.0,0.0
152
+ TCGA-AX-A06H-01,1,60.0,0.0
153
+ TCGA-AX-A06J-01,1,71.0,0.0
154
+ TCGA-AX-A06L-01,1,63.0,0.0
155
+ TCGA-AX-A0IS-01,1,52.0,0.0
156
+ TCGA-AX-A0IU-01,1,79.0,0.0
157
+ TCGA-AX-A0IW-01,1,67.0,0.0
158
+ TCGA-AX-A0IZ-01,1,53.0,0.0
159
+ TCGA-AX-A0IZ-11,0,53.0,0.0
160
+ TCGA-AX-A0J0-01,1,47.0,0.0
161
+ TCGA-AX-A0J0-11,0,47.0,0.0
162
+ TCGA-AX-A0J1-01,1,80.0,0.0
163
+ TCGA-AX-A1C4-01,1,52.0,0.0
164
+ TCGA-AX-A1C5-01,1,47.0,0.0
165
+ TCGA-AX-A1C7-01,1,77.0,0.0
166
+ TCGA-AX-A1C8-01,1,77.0,0.0
167
+ TCGA-AX-A1C9-01,1,73.0,0.0
168
+ TCGA-AX-A1CA-01,1,70.0,0.0
169
+ TCGA-AX-A1CC-01,1,65.0,0.0
170
+ TCGA-AX-A1CE-01,1,60.0,0.0
171
+ TCGA-AX-A1CF-01,1,69.0,0.0
172
+ TCGA-AX-A1CF-11,0,69.0,0.0
173
+ TCGA-AX-A1CI-01,1,61.0,0.0
174
+ TCGA-AX-A1CI-11,0,61.0,0.0
175
+ TCGA-AX-A1CJ-01,1,59.0,0.0
176
+ TCGA-AX-A1CJ-11,0,59.0,0.0
177
+ TCGA-AX-A1CK-01,1,58.0,0.0
178
+ TCGA-AX-A1CK-11,0,58.0,0.0
179
+ TCGA-AX-A1CN-01,1,54.0,0.0
180
+ TCGA-AX-A1CP-01,1,84.0,0.0
181
+ TCGA-AX-A1CR-01,1,70.0,0.0
182
+ TCGA-AX-A2H2-01,1,86.0,0.0
183
+ TCGA-AX-A2H4-01,1,66.0,0.0
184
+ TCGA-AX-A2H4-11,0,66.0,0.0
185
+ TCGA-AX-A2H5-01,1,67.0,0.0
186
+ TCGA-AX-A2H5-11,0,67.0,0.0
187
+ TCGA-AX-A2H7-01,1,87.0,0.0
188
+ TCGA-AX-A2H7-11,0,87.0,0.0
189
+ TCGA-AX-A2H8-01,1,64.0,0.0
190
+ TCGA-AX-A2H8-11,0,64.0,0.0
191
+ TCGA-AX-A2HA-01,1,35.0,0.0
192
+ TCGA-AX-A2HA-11,0,35.0,0.0
193
+ TCGA-AX-A2HC-01,1,53.0,0.0
194
+ TCGA-AX-A2HC-11,0,53.0,0.0
195
+ TCGA-AX-A2HD-01,1,69.0,0.0
196
+ TCGA-AX-A2HD-11,0,69.0,0.0
197
+ TCGA-AX-A2HF-01,1,67.0,0.0
198
+ TCGA-AX-A2HG-01,1,56.0,0.0
199
+ TCGA-AX-A2HH-01,1,60.0,0.0
200
+ TCGA-AX-A2HJ-01,1,35.0,0.0
201
+ TCGA-AX-A2HK-01,1,77.0,0.0
202
+ TCGA-AX-A2IN-01,1,63.0,0.0
203
+ TCGA-AX-A2IO-01,1,83.0,0.0
204
+ TCGA-AX-A3FS-01,1,82.0,0.0
205
+ TCGA-AX-A3FT-01,1,64.0,0.0
206
+ TCGA-AX-A3FV-01,1,62.0,0.0
207
+ TCGA-AX-A3FW-01,1,66.0,0.0
208
+ TCGA-AX-A3FX-01,1,69.0,0.0
209
+ TCGA-AX-A3FZ-01,1,33.0,0.0
210
+ TCGA-AX-A3G1-01,1,84.0,0.0
211
+ TCGA-AX-A3G3-01,1,58.0,0.0
212
+ TCGA-AX-A3G4-01,1,60.0,0.0
213
+ TCGA-AX-A3G6-01,1,67.0,0.0
214
+ TCGA-AX-A3G7-01,1,71.0,0.0
215
+ TCGA-AX-A3G8-01,1,76.0,0.0
216
+ TCGA-AX-A3G9-01,1,63.0,0.0
217
+ TCGA-AX-A3GB-01,1,73.0,0.0
218
+ TCGA-AX-A3GI-01,1,66.0,0.0
219
+ TCGA-B5-A0JN-01,1,84.0,0.0
220
+ TCGA-B5-A0JR-01,1,73.0,0.0
221
+ TCGA-B5-A0JS-01,1,54.0,0.0
222
+ TCGA-B5-A0JT-01,1,63.0,0.0
223
+ TCGA-B5-A0JU-01,1,57.0,0.0
224
+ TCGA-B5-A0JV-01,1,63.0,0.0
225
+ TCGA-B5-A0JX-01,1,62.0,0.0
226
+ TCGA-B5-A0JY-01,1,50.0,0.0
227
+ TCGA-B5-A0JZ-01,1,60.0,0.0
228
+ TCGA-B5-A0K0-01,1,48.0,0.0
229
+ TCGA-B5-A0K1-01,1,69.0,0.0
230
+ TCGA-B5-A0K2-01,1,54.0,0.0
231
+ TCGA-B5-A0K3-01,1,62.0,0.0
232
+ TCGA-B5-A0K4-01,1,51.0,0.0
233
+ TCGA-B5-A0K6-01,1,58.0,0.0
234
+ TCGA-B5-A0K7-01,1,64.0,0.0
235
+ TCGA-B5-A0K8-01,1,71.0,0.0
236
+ TCGA-B5-A0K9-01,1,88.0,0.0
237
+ TCGA-B5-A0KB-01,1,62.0,0.0
238
+ TCGA-B5-A11E-01,1,53.0,0.0
239
+ TCGA-B5-A11F-01,1,55.0,0.0
240
+ TCGA-B5-A11G-01,1,71.0,0.0
241
+ TCGA-B5-A11H-01,1,67.0,0.0
242
+ TCGA-B5-A11I-01,1,65.0,0.0
243
+ TCGA-B5-A11J-01,1,64.0,0.0
244
+ TCGA-B5-A11L-01,1,71.0,0.0
245
+ TCGA-B5-A11M-01,1,43.0,0.0
246
+ TCGA-B5-A11N-01,1,69.0,0.0
247
+ TCGA-B5-A11O-01,1,62.0,0.0
248
+ TCGA-B5-A11P-01,1,87.0,0.0
249
+ TCGA-B5-A11Q-01,1,64.0,0.0
250
+ TCGA-B5-A11R-01,1,51.0,0.0
251
+ TCGA-B5-A11S-01,1,63.0,0.0
252
+ TCGA-B5-A11U-01,1,74.0,0.0
253
+ TCGA-B5-A11V-01,1,64.0,0.0
254
+ TCGA-B5-A11W-01,1,61.0,0.0
255
+ TCGA-B5-A11X-01,1,66.0,0.0
256
+ TCGA-B5-A11Y-01,1,59.0,0.0
257
+ TCGA-B5-A11Z-01,1,61.0,0.0
258
+ TCGA-B5-A121-01,1,57.0,0.0
259
+ TCGA-B5-A1MR-01,1,65.0,0.0
260
+ TCGA-B5-A1MS-01,1,60.0,0.0
261
+ TCGA-B5-A1MU-01,1,79.0,0.0
262
+ TCGA-B5-A1MV-01,1,84.0,0.0
263
+ TCGA-B5-A1MW-01,1,55.0,0.0
264
+ TCGA-B5-A1MX-01,1,47.0,0.0
265
+ TCGA-B5-A1MY-01,1,62.0,0.0
266
+ TCGA-B5-A1MZ-01,1,54.0,0.0
267
+ TCGA-B5-A1N2-01,1,70.0,0.0
268
+ TCGA-B5-A3F9-01,1,56.0,0.0
269
+ TCGA-B5-A3FA-01,1,73.0,0.0
270
+ TCGA-B5-A3FB-01,1,73.0,0.0
271
+ TCGA-B5-A3FC-01,1,53.0,0.0
272
+ TCGA-B5-A3FD-01,1,70.0,0.0
273
+ TCGA-B5-A3FH-01,1,74.0,0.0
274
+ TCGA-B5-A3S1-01,1,71.0,0.0
275
+ TCGA-B5-A5OC-01,1,71.0,0.0
276
+ TCGA-B5-A5OD-01,1,67.0,0.0
277
+ TCGA-B5-A5OE-01,1,68.0,0.0
278
+ TCGA-BG-A0LW-01,1,47.0,0.0
279
+ TCGA-BG-A0LX-01,1,57.0,0.0
280
+ TCGA-BG-A0M0-01,1,66.0,0.0
281
+ TCGA-BG-A0M2-01,1,62.0,0.0
282
+ TCGA-BG-A0M3-01,1,74.0,0.0
283
+ TCGA-BG-A0M4-01,1,60.0,0.0
284
+ TCGA-BG-A0M6-01,1,73.0,0.0
285
+ TCGA-BG-A0M7-01,1,60.0,0.0
286
+ TCGA-BG-A0M8-01,1,50.0,0.0
287
+ TCGA-BG-A0M9-01,1,73.0,0.0
288
+ TCGA-BG-A0MA-01,1,60.0,0.0
289
+ TCGA-BG-A0MA-11,0,60.0,0.0
290
+ TCGA-BG-A0MC-01,1,74.0,0.0
291
+ TCGA-BG-A0MG-01,1,73.0,0.0
292
+ TCGA-BG-A0MH-01,1,61.0,0.0
293
+ TCGA-BG-A0MI-01,1,83.0,0.0
294
+ TCGA-BG-A0MK-01,1,52.0,0.0
295
+ TCGA-BG-A0MO-01,1,63.0,0.0
296
+ TCGA-BG-A0MQ-01,1,71.0,0.0
297
+ TCGA-BG-A0MS-01,1,53.0,0.0
298
+ TCGA-BG-A0MT-01,1,64.0,0.0
299
+ TCGA-BG-A0MU-01,1,78.0,0.0
300
+ TCGA-BG-A0RY-01,1,68.0,0.0
301
+ TCGA-BG-A0VT-01,1,56.0,0.0
302
+ TCGA-BG-A0VV-01,1,53.0,0.0
303
+ TCGA-BG-A0VW-01,1,77.0,0.0
304
+ TCGA-BG-A0VX-01,1,58.0,0.0
305
+ TCGA-BG-A0VZ-01,1,58.0,0.0
306
+ TCGA-BG-A0W1-01,1,89.0,0.0
307
+ TCGA-BG-A0W2-01,1,57.0,0.0
308
+ TCGA-BG-A0YU-01,1,37.0,0.0
309
+ TCGA-BG-A0YV-01,1,67.0,0.0
310
+ TCGA-BG-A186-01,1,61.0,0.0
311
+ TCGA-BG-A187-01,1,65.0,0.0
312
+ TCGA-BG-A18A-01,1,74.0,0.0
313
+ TCGA-BG-A18B-01,1,53.0,0.0
314
+ TCGA-BG-A18C-01,1,72.0,0.0
315
+ TCGA-BG-A220-01,1,69.0,0.0
316
+ TCGA-BG-A221-01,1,84.0,0.0
317
+ TCGA-BG-A222-01,1,49.0,0.0
318
+ TCGA-BG-A2AD-01,1,63.0,0.0
319
+ TCGA-BG-A2AD-11,0,63.0,0.0
320
+ TCGA-BG-A2AE-01,1,57.0,0.0
321
+ TCGA-BG-A2AE-11,0,57.0,0.0
322
+ TCGA-BG-A2L7-01,1,68.0,0.0
323
+ TCGA-BG-A2L7-11,0,68.0,0.0
324
+ TCGA-BG-A3EW-01,1,62.0,0.0
325
+ TCGA-BG-A3EW-11,0,62.0,0.0
326
+ TCGA-BG-A3PP-01,1,82.0,0.0
327
+ TCGA-BG-A3PP-11,0,82.0,0.0
328
+ TCGA-BK-A0C9-01,1,57.0,0.0
329
+ TCGA-BK-A0CA-01,1,61.0,0.0
330
+ TCGA-BK-A0CB-01,1,60.0,0.0
331
+ TCGA-BK-A0CB-11,0,60.0,0.0
332
+ TCGA-BK-A0CC-01,1,69.0,0.0
333
+ TCGA-BK-A139-01,1,74.0,0.0
334
+ TCGA-BK-A139-02,1,74.0,0.0
335
+ TCGA-BK-A13B-01,1,58.0,0.0
336
+ TCGA-BK-A13C-01,1,47.0,0.0
337
+ TCGA-BK-A13C-11,0,47.0,0.0
338
+ TCGA-BK-A26L-01,1,71.0,0.0
339
+ TCGA-BK-A4ZD-01,1,42.0,0.0
340
+ TCGA-BK-A4ZD-11,0,42.0,0.0
341
+ TCGA-BK-A56F-01,1,75.0,0.0
342
+ TCGA-BK-A6W3-01,1,34.0,0.0
343
+ TCGA-BK-A6W4-01,1,62.0,0.0
344
+ TCGA-BS-A0T9-01,1,39.0,0.0
345
+ TCGA-BS-A0TA-01,1,58.0,0.0
346
+ TCGA-BS-A0TC-01,1,69.0,0.0
347
+ TCGA-BS-A0TD-01,1,65.0,0.0
348
+ TCGA-BS-A0TE-01,1,35.0,0.0
349
+ TCGA-BS-A0TG-01,1,60.0,0.0
350
+ TCGA-BS-A0TI-01,1,64.0,0.0
351
+ TCGA-BS-A0TJ-01,1,59.0,0.0
352
+ TCGA-BS-A0U5-01,1,76.0,0.0
353
+ TCGA-BS-A0U7-01,1,63.0,0.0
354
+ TCGA-BS-A0U8-01,1,55.0,0.0
355
+ TCGA-BS-A0U9-01,1,59.0,0.0
356
+ TCGA-BS-A0UA-01,1,68.0,0.0
357
+ TCGA-BS-A0UF-01,1,65.0,0.0
358
+ TCGA-BS-A0UJ-01,1,68.0,0.0
359
+ TCGA-BS-A0UL-01,1,54.0,0.0
360
+ TCGA-BS-A0UM-01,1,64.0,0.0
361
+ TCGA-BS-A0UT-01,1,62.0,0.0
362
+ TCGA-BS-A0UV-01,1,55.0,0.0
363
+ TCGA-BS-A0V4-01,1,56.0,0.0
364
+ TCGA-BS-A0V6-01,1,55.0,0.0
365
+ TCGA-BS-A0V7-01,1,48.0,0.0
366
+ TCGA-BS-A0V8-01,1,68.0,0.0
367
+ TCGA-BS-A0VI-01,1,58.0,0.0
368
+ TCGA-BS-A0WQ-01,1,55.0,0.0
369
+ TCGA-D1-A0ZN-01,1,60.0,0.0
370
+ TCGA-D1-A0ZO-01,1,75.0,0.0
371
+ TCGA-D1-A0ZP-01,1,59.0,0.0
372
+ TCGA-D1-A0ZQ-01,1,90.0,0.0
373
+ TCGA-D1-A0ZR-01,1,57.0,0.0
374
+ TCGA-D1-A0ZS-01,1,54.0,0.0
375
+ TCGA-D1-A0ZU-01,1,34.0,0.0
376
+ TCGA-D1-A0ZV-01,1,58.0,0.0
377
+ TCGA-D1-A0ZZ-01,1,80.0,0.0
378
+ TCGA-D1-A101-01,1,60.0,0.0
379
+ TCGA-D1-A102-01,1,49.0,0.0
380
+ TCGA-D1-A103-01,1,87.0,0.0
381
+ TCGA-D1-A15V-01,1,68.0,0.0
382
+ TCGA-D1-A15W-01,1,58.0,0.0
383
+ TCGA-D1-A15X-01,1,45.0,0.0
384
+ TCGA-D1-A15Z-01,1,72.0,0.0
385
+ TCGA-D1-A160-01,1,70.0,0.0
386
+ TCGA-D1-A161-01,1,78.0,0.0
387
+ TCGA-D1-A162-01,1,69.0,0.0
388
+ TCGA-D1-A163-01,1,50.0,0.0
389
+ TCGA-D1-A165-01,1,64.0,0.0
390
+ TCGA-D1-A167-01,1,70.0,0.0
391
+ TCGA-D1-A168-01,1,67.0,0.0
392
+ TCGA-D1-A169-01,1,63.0,0.0
393
+ TCGA-D1-A16B-01,1,64.0,0.0
394
+ TCGA-D1-A16D-01,1,49.0,0.0
395
+ TCGA-D1-A16E-01,1,73.0,0.0
396
+ TCGA-D1-A16F-01,1,60.0,0.0
397
+ TCGA-D1-A16G-01,1,74.0,0.0
398
+ TCGA-D1-A16I-01,1,62.0,0.0
399
+ TCGA-D1-A16J-01,1,61.0,0.0
400
+ TCGA-D1-A16N-01,1,51.0,0.0
401
+ TCGA-D1-A16O-01,1,44.0,0.0
402
+ TCGA-D1-A16Q-01,1,54.0,0.0
403
+ TCGA-D1-A16R-01,1,39.0,0.0
404
+ TCGA-D1-A16S-01,1,70.0,0.0
405
+ TCGA-D1-A16V-01,1,78.0,0.0
406
+ TCGA-D1-A16X-01,1,54.0,0.0
407
+ TCGA-D1-A16Y-01,1,56.0,0.0
408
+ TCGA-D1-A174-01,1,51.0,0.0
409
+ TCGA-D1-A175-01,1,48.0,0.0
410
+ TCGA-D1-A176-01,1,67.0,0.0
411
+ TCGA-D1-A177-01,1,70.0,0.0
412
+ TCGA-D1-A179-01,1,76.0,0.0
413
+ TCGA-D1-A17A-01,1,59.0,0.0
414
+ TCGA-D1-A17B-01,1,69.0,0.0
415
+ TCGA-D1-A17C-01,1,78.0,0.0
416
+ TCGA-D1-A17D-01,1,58.0,0.0
417
+ TCGA-D1-A17F-01,1,68.0,0.0
418
+ TCGA-D1-A17H-01,1,61.0,0.0
419
+ TCGA-D1-A17K-01,1,74.0,0.0
420
+ TCGA-D1-A17L-01,1,81.0,0.0
421
+ TCGA-D1-A17M-01,1,56.0,0.0
422
+ TCGA-D1-A17N-01,1,46.0,0.0
423
+ TCGA-D1-A17Q-01,1,54.0,0.0
424
+ TCGA-D1-A17R-01,1,58.0,0.0
425
+ TCGA-D1-A17S-01,1,59.0,0.0
426
+ TCGA-D1-A17T-01,1,67.0,0.0
427
+ TCGA-D1-A17U-01,1,53.0,0.0
428
+ TCGA-D1-A1NS-01,1,53.0,0.0
429
+ TCGA-D1-A1NU-01,1,74.0,0.0
430
+ TCGA-D1-A1NW-01,1,72.0,0.0
431
+ TCGA-D1-A1NX-01,1,66.0,0.0
432
+ TCGA-D1-A1NY-01,1,67.0,0.0
433
+ TCGA-D1-A1NZ-01,1,60.0,0.0
434
+ TCGA-D1-A1O0-01,1,77.0,0.0
435
+ TCGA-D1-A1O5-01,1,61.0,0.0
436
+ TCGA-D1-A1O7-01,1,60.0,0.0
437
+ TCGA-D1-A1O8-01,1,70.0,0.0
438
+ TCGA-D1-A2G0-01,1,70.0,0.0
439
+ TCGA-D1-A2G5-01,1,50.0,0.0
440
+ TCGA-D1-A2G6-01,1,53.0,0.0
441
+ TCGA-D1-A2G7-01,1,65.0,0.0
442
+ TCGA-D1-A3DA-01,1,77.0,0.0
443
+ TCGA-D1-A3DG-01,1,81.0,0.0
444
+ TCGA-D1-A3DH-01,1,71.0,0.0
445
+ TCGA-D1-A3JP-01,1,61.0,0.0
446
+ TCGA-D1-A3JQ-01,1,61.0,0.0
447
+ TCGA-DF-A2KN-01,1,,0.0
448
+ TCGA-DF-A2KR-01,1,84.0,0.0
449
+ TCGA-DF-A2KS-01,1,69.0,0.0
450
+ TCGA-DF-A2KU-01,1,,0.0
451
+ TCGA-DF-A2KV-01,1,55.0,0.0
452
+ TCGA-DF-A2KY-01,1,49.0,0.0
453
+ TCGA-DF-A2KZ-01,1,87.0,0.0
454
+ TCGA-DF-A2L0-01,1,60.0,0.0
455
+ TCGA-DI-A0WH-01,1,64.0,0.0
456
+ TCGA-DI-A1BU-01,1,55.0,0.0
457
+ TCGA-DI-A1BY-01,1,63.0,0.0
458
+ TCGA-DI-A1C3-01,1,38.0,0.0
459
+ TCGA-DI-A1NN-01,1,63.0,0.0
460
+ TCGA-DI-A1NN-11,0,63.0,0.0
461
+ TCGA-DI-A1NO-01,1,68.0,0.0
462
+ TCGA-DI-A1NO-11,0,68.0,0.0
463
+ TCGA-DI-A2QT-01,1,51.0,0.0
464
+ TCGA-DI-A2QU-01,1,67.0,0.0
465
+ TCGA-DI-A2QU-11,0,67.0,0.0
466
+ TCGA-DI-A2QY-01,1,64.0,0.0
467
+ TCGA-DI-A2QY-11,0,64.0,0.0
468
+ TCGA-E6-A1LX-01,1,40.0,0.0
469
+ TCGA-E6-A1LZ-01,1,76.0,0.0
470
+ TCGA-E6-A1M0-01,1,56.0,0.0
471
+ TCGA-E6-A1M0-11,0,56.0,0.0
472
+ TCGA-E6-A2P8-01,1,53.0,0.0
473
+ TCGA-E6-A2P9-01,1,65.0,0.0
474
+ TCGA-E6-A8L9-01,1,61.0,0.0
475
+ TCGA-EC-A1NJ-01,1,73.0,0.0
476
+ TCGA-EC-A1QX-01,1,71.0,0.0
477
+ TCGA-EC-A24G-01,1,57.0,0.0
478
+ TCGA-EO-A1Y5-01,1,63.0,0.0
479
+ TCGA-EO-A1Y7-01,1,65.0,0.0
480
+ TCGA-EO-A1Y8-01,1,87.0,0.0
481
+ TCGA-EO-A22R-01,1,56.0,0.0
482
+ TCGA-EO-A22R-11,0,56.0,0.0
483
+ TCGA-EO-A22S-01,1,58.0,0.0
484
+ TCGA-EO-A22S-11,0,58.0,0.0
485
+ TCGA-EO-A22T-01,1,56.0,0.0
486
+ TCGA-EO-A22T-11,0,56.0,0.0
487
+ TCGA-EO-A22U-01,1,83.0,0.0
488
+ TCGA-EO-A22X-01,1,36.0,0.0
489
+ TCGA-EO-A22Y-01,1,68.0,0.0
490
+ TCGA-EO-A2CG-01,1,69.0,0.0
491
+ TCGA-EO-A2CH-01,1,73.0,0.0
492
+ TCGA-EO-A3AS-01,1,86.0,0.0
493
+ TCGA-EO-A3AU-01,1,72.0,0.0
494
+ TCGA-EO-A3AV-01,1,51.0,0.0
495
+ TCGA-EO-A3AY-01,1,58.0,0.0
496
+ TCGA-EO-A3AZ-01,1,80.0,0.0
497
+ TCGA-EO-A3B0-01,1,43.0,0.0
498
+ TCGA-EO-A3B1-01,1,63.0,0.0
499
+ TCGA-EO-A3KU-01,1,68.0,0.0
500
+ TCGA-EO-A3KW-01,1,72.0,0.0
501
+ TCGA-EO-A3KX-01,1,80.0,0.0
502
+ TCGA-EO-A3L0-01,1,76.0,0.0
503
+ TCGA-EY-A1G7-01,1,86.0,0.0
504
+ TCGA-EY-A1G8-01,1,83.0,0.0
505
+ TCGA-EY-A1GC-01,1,62.0,0.0
506
+ TCGA-EY-A1GD-01,1,51.0,0.0
507
+ TCGA-EY-A1GE-01,1,67.0,0.0
508
+ TCGA-EY-A1GF-01,1,75.0,0.0
509
+ TCGA-EY-A1GH-01,1,70.0,0.0
510
+ TCGA-EY-A1GI-01,1,52.0,0.0
511
+ TCGA-EY-A1GJ-01,1,73.0,0.0
512
+ TCGA-EY-A1GK-01,1,74.0,0.0
513
+ TCGA-EY-A1GL-01,1,51.0,0.0
514
+ TCGA-EY-A1GM-01,1,60.0,0.0
515
+ TCGA-EY-A1GO-01,1,65.0,0.0
516
+ TCGA-EY-A1GP-01,1,54.0,0.0
517
+ TCGA-EY-A1GQ-01,1,76.0,0.0
518
+ TCGA-EY-A1GR-01,1,67.0,0.0
519
+ TCGA-EY-A1GS-01,1,71.0,0.0
520
+ TCGA-EY-A1GT-01,1,68.0,0.0
521
+ TCGA-EY-A1GU-01,1,66.0,0.0
522
+ TCGA-EY-A1GV-01,1,75.0,0.0
523
+ TCGA-EY-A1GW-01,1,73.0,0.0
524
+ TCGA-EY-A1GX-01,1,76.0,0.0
525
+ TCGA-EY-A1H0-01,1,57.0,0.0
526
+ TCGA-EY-A210-01,1,82.0,0.0
527
+ TCGA-EY-A212-01,1,83.0,0.0
528
+ TCGA-EY-A214-01,1,66.0,0.0
529
+ TCGA-EY-A215-01,1,60.0,0.0
530
+ TCGA-EY-A2OM-01,1,55.0,0.0
531
+ TCGA-EY-A2ON-01,1,61.0,0.0
532
+ TCGA-EY-A2OO-01,1,56.0,0.0
533
+ TCGA-EY-A2OP-01,1,63.0,0.0
534
+ TCGA-EY-A2OQ-01,1,61.0,0.0
535
+ TCGA-EY-A3L3-01,1,82.0,0.0
536
+ TCGA-EY-A3QX-01,1,64.0,0.0
537
+ TCGA-EY-A4KR-01,1,56.0,0.0
538
+ TCGA-EY-A547-01,1,75.0,0.0
539
+ TCGA-EY-A548-01,1,83.0,0.0
540
+ TCGA-EY-A549-01,1,78.0,0.0
541
+ TCGA-EY-A54A-01,1,67.0,0.0
542
+ TCGA-EY-A5W2-01,1,72.0,0.0
543
+ TCGA-EY-A72D-01,1,87.0,0.0
544
+ TCGA-FI-A2CX-01,1,82.0,0.0
545
+ TCGA-FI-A2CY-01,1,60.0,0.0
546
+ TCGA-FI-A2D0-01,1,55.0,0.0
547
+ TCGA-FI-A2D2-01,1,66.0,0.0
548
+ TCGA-FI-A2D4-01,1,44.0,0.0
549
+ TCGA-FI-A2D5-01,1,56.0,0.0
550
+ TCGA-FI-A2D6-01,1,74.0,0.0
551
+ TCGA-FI-A2EU-01,1,68.0,0.0
552
+ TCGA-FI-A2EW-01,1,71.0,0.0
553
+ TCGA-FI-A2EX-01,1,58.0,0.0
554
+ TCGA-FI-A2EY-01,1,63.0,0.0
555
+ TCGA-FI-A2F4-01,1,64.0,0.0
556
+ TCGA-FI-A2F8-01,1,64.0,0.0
557
+ TCGA-FI-A2F9-01,1,79.0,0.0
558
+ TCGA-FI-A3PV-01,1,68.0,0.0
559
+ TCGA-FI-A3PX-01,1,57.0,0.0
560
+ TCGA-FL-A1YF-11,0,,
561
+ TCGA-FL-A1YG-11,0,,
562
+ TCGA-FL-A1YH-11,0,,
563
+ TCGA-FL-A1YI-11,0,,
564
+ TCGA-FL-A1YL-11,0,,
565
+ TCGA-FL-A1YM-11,0,,
566
+ TCGA-FL-A1YN-11,0,,
567
+ TCGA-FL-A1YQ-11,0,,
568
+ TCGA-FL-A1YT-11,0,,
569
+ TCGA-FL-A1YU-11,0,,
570
+ TCGA-FL-A1YV-11,0,,
571
+ TCGA-FL-A3WE-11,0,,
572
+ TCGA-H5-A2HR-01,1,71.0,0.0
573
+ TCGA-JU-AAVI-01,1,61.0,0.0
574
+ TCGA-K6-A3WQ-01,1,60.0,0.0
575
+ TCGA-KJ-A3U4-01,1,55.0,0.0
576
+ TCGA-KP-A3VZ-01,1,69.0,0.0
577
+ TCGA-KP-A3W0-01,1,72.0,0.0
578
+ TCGA-KP-A3W1-01,1,76.0,0.0
579
+ TCGA-KP-A3W3-01,1,72.0,0.0
580
+ TCGA-KP-A3W4-01,1,63.0,0.0
581
+ TCGA-PG-A5BC-01,1,72.0,0.0
582
+ TCGA-PG-A6IB-01,1,68.0,0.0
583
+ TCGA-PG-A7D5-01,1,62.0,0.0
584
+ TCGA-PG-A914-01,1,73.0,0.0
585
+ TCGA-PG-A915-01,1,60.0,0.0
586
+ TCGA-PG-A916-01,1,70.0,0.0
587
+ TCGA-PG-A917-01,1,74.0,0.0
588
+ TCGA-QF-A5YS-01,1,57.0,0.0
589
+ TCGA-QF-A5YT-01,1,57.0,0.0
590
+ TCGA-QS-A5YQ-01,1,55.0,0.0
591
+ TCGA-QS-A5YR-01,1,61.0,0.0
592
+ TCGA-QS-A744-01,1,86.0,0.0
593
+ TCGA-QS-A8F1-01,1,85.0,0.0
594
+ TCGA-SJ-A6ZI-01,1,64.0,0.0
595
+ TCGA-SJ-A6ZJ-01,1,61.0,0.0
596
+ TCGA-SL-A6J9-01,1,73.0,0.0
597
+ TCGA-SL-A6JA-01,1,77.0,0.0
p3/preprocess/Endometriosis/code/GSE111974.py ADDED
@@ -0,0 +1,122 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometriosis"
6
+ cohort = "GSE111974"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometriosis"
10
+ in_cohort_dir = "../DATA/GEO/Endometriosis/GSE111974"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometriosis/GSE111974.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE111974.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE111974.csv"
16
+ json_path = "./output/preprocess/3/Endometriosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ # Based on series title and summary mentioning "RNA expression", and focusing on endometrial tissue
38
+ is_gene_available = True
39
+
40
+ # 2. Trait, Age, Gender Data Analysis
41
+ # 2.1 Data Availability
42
+ # trait row: We can infer endometriosis status from being in RIF vs control group
43
+ trait_row = 0
44
+
45
+ # Age and gender not explicitly available in sample characteristics
46
+ age_row = None
47
+ gender_row = None
48
+
49
+ # 2.2 Data Type Conversion Functions
50
+ def convert_trait(value):
51
+ """Convert RIF/Control status to binary
52
+ From background: RIF group = cases, Fertile control = controls"""
53
+ if not isinstance(value, str):
54
+ return None
55
+ value = value.lower().split(": ")[-1]
56
+ if "endometrial tissue" in value:
57
+ # Here we can't determine case/control status from this field alone
58
+ return None
59
+ return None
60
+
61
+ def convert_age(value):
62
+ return None # Age data not available
63
+
64
+ def convert_gender(value):
65
+ return None # Gender data not available
66
+
67
+ # 3. Save Initial Metadata
68
+ is_trait_available = trait_row is not None
69
+ is_usable = validate_and_save_cohort_info(
70
+ is_final=False,
71
+ cohort=cohort,
72
+ info_path=json_path,
73
+ is_gene_available=is_gene_available,
74
+ is_trait_available=is_trait_available
75
+ )
76
+
77
+ # 4. Extract Clinical Features (skip since trait conversion gives None)
78
+ if trait_row is not None:
79
+ clinical_df = geo_select_clinical_features(
80
+ clinical_df=clinical_data,
81
+ trait=trait,
82
+ trait_row=trait_row,
83
+ convert_trait=convert_trait,
84
+ age_row=age_row,
85
+ convert_age=convert_age,
86
+ gender_row=gender_row,
87
+ convert_gender=convert_gender
88
+ )
89
+
90
+ # Preview results
91
+ print(preview_df(clinical_df))
92
+
93
+ # Save to CSV
94
+ clinical_df.to_csv(out_clinical_data_file)
95
+ # 1. Gene Expression Data: No gene expression data found
96
+ is_gene_available = False
97
+
98
+ # 2. Variable availability and conversion
99
+ trait_row = None # No trait information available
100
+ age_row = None # No age information available
101
+ gender_row = None # No gender information available
102
+
103
+ # No conversion functions needed since no data is available
104
+ def convert_trait(x):
105
+ return None
106
+
107
+ def convert_age(x):
108
+ return None
109
+
110
+ def convert_gender(x):
111
+ return None
112
+
113
+ # 3. Save metadata
114
+ validate_and_save_cohort_info(
115
+ is_final=False,
116
+ cohort=cohort,
117
+ info_path=json_path,
118
+ is_gene_available=is_gene_available,
119
+ is_trait_available=(trait_row is not None)
120
+ )
121
+
122
+ # 4. Skip clinical feature extraction since trait_row is None
p3/preprocess/Endometriosis/code/GSE120103.py ADDED
@@ -0,0 +1,166 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometriosis"
6
+ cohort = "GSE120103"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometriosis"
10
+ in_cohort_dir = "../DATA/GEO/Endometriosis/GSE120103"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometriosis/GSE120103.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE120103.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE120103.csv"
16
+ json_path = "./output/preprocess/3/Endometriosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene expression data is available as it's a whole genome expression microarray
37
+ is_gene_available = True
38
+
39
+ # 2.1 Data availability
40
+ trait_row = 1 # The sample group field contains endometriosis status
41
+ age_row = None # Age information not available
42
+ gender_row = 0 # Gender information available but constant (all female)
43
+
44
+ # 2.2 Data type conversion functions
45
+ def convert_trait(x):
46
+ if not x or ':' not in x:
47
+ return None
48
+ value = x.split(': ')[1].strip().lower()
49
+ # Convert based on presence of "disease free" in the description
50
+ if "disease free" in value:
51
+ return 0 # No endometriosis
52
+ elif "stage iv ovarian endometriosis" in value:
53
+ return 1 # Has endometriosis
54
+ return None
55
+
56
+ def convert_age(x):
57
+ # Not used since age data is not available
58
+ return None
59
+
60
+ def convert_gender(x):
61
+ # Not used since all samples are female
62
+ return None
63
+
64
+ # 3. Save metadata
65
+ is_trait_available = trait_row is not None
66
+ validate_and_save_cohort_info(
67
+ is_final=False,
68
+ cohort=cohort,
69
+ info_path=json_path,
70
+ is_gene_available=is_gene_available,
71
+ is_trait_available=is_trait_available
72
+ )
73
+
74
+ # 4. Extract clinical features
75
+ if trait_row is not None:
76
+ clinical_features = geo_select_clinical_features(
77
+ clinical_df=clinical_data,
78
+ trait=trait,
79
+ trait_row=trait_row,
80
+ convert_trait=convert_trait,
81
+ age_row=age_row,
82
+ convert_age=convert_age,
83
+ gender_row=gender_row,
84
+ convert_gender=convert_gender
85
+ )
86
+
87
+ # Preview the extracted features
88
+ print("Preview of clinical features:")
89
+ print(preview_df(clinical_features))
90
+
91
+ # Save to CSV
92
+ clinical_features.to_csv(out_clinical_data_file)
93
+ # Get file paths
94
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
95
+
96
+ # Extract gene expression data from matrix file
97
+ gene_data = get_genetic_data(matrix_file)
98
+
99
+ # Print first 20 row IDs and shape of data to help debug
100
+ print("Shape of gene expression data:", gene_data.shape)
101
+ print("\nFirst few rows of data:")
102
+ print(gene_data.head())
103
+ print("\nFirst 20 gene/probe identifiers:")
104
+ print(gene_data.index[:20])
105
+
106
+ # Inspect a snippet of raw file to verify identifier format
107
+ import gzip
108
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
109
+ lines = []
110
+ for i, line in enumerate(f):
111
+ if "!series_matrix_table_begin" in line:
112
+ # Get the next 5 lines after the marker
113
+ for _ in range(5):
114
+ lines.append(next(f).strip())
115
+ break
116
+ print("\nFirst few lines after matrix marker in raw file:")
117
+ for line in lines:
118
+ print(line)
119
+ # Looking at the gene identifiers (e.g. 'A_23_P100001'), these appear to be Agilent probe IDs
120
+ # They need to be mapped to human gene symbols
121
+ requires_gene_mapping = True
122
+ # Extract gene annotation data
123
+ gene_metadata = get_gene_annotation(soft_file)
124
+
125
+ # Preview the annotation data
126
+ print("Column names:", gene_metadata.columns.tolist())
127
+ print("\nFirst few rows preview:")
128
+ print(preview_df(gene_metadata))
129
+ # Extract probe ID and gene symbol columns for mapping
130
+ mapping_data = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
131
+
132
+ # Apply gene mapping to convert probe-level data to gene-level data
133
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
134
+
135
+ # Preview the mapped gene expression data
136
+ print("Shape of mapped gene expression data:", gene_data.shape)
137
+ print("\nFirst few rows of mapped data:")
138
+ print(gene_data.head())
139
+ # 1. Normalize gene symbols
140
+ gene_data = normalize_gene_symbols_in_index(gene_data)
141
+ gene_data.to_csv(out_gene_data_file)
142
+
143
+ # 2. Link clinical and genetic data
144
+ linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
145
+
146
+ # 3. Handle missing values
147
+ linked_data = handle_missing_values(linked_data, trait)
148
+
149
+ # 4. Check for bias
150
+ trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
151
+
152
+ # 5. Validate and save cohort info
153
+ is_usable = validate_and_save_cohort_info(
154
+ is_final=True,
155
+ cohort=cohort,
156
+ info_path=json_path,
157
+ is_gene_available=True,
158
+ is_trait_available=True,
159
+ is_biased=trait_biased,
160
+ df=linked_data,
161
+ note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells."
162
+ )
163
+
164
+ # 6. Save if usable
165
+ if is_usable:
166
+ linked_data.to_csv(out_data_file)
p3/preprocess/Endometriosis/code/GSE138297.py ADDED
@@ -0,0 +1,138 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ # Path Configuration
2
+ from tools.preprocess import *
3
+
4
+ # Processing context
5
+ trait = "Endometriosis"
6
+ cohort = "GSE138297"
7
+
8
+ # Input paths
9
+ in_trait_dir = "../DATA/GEO/Endometriosis"
10
+ in_cohort_dir = "../DATA/GEO/Endometriosis/GSE138297"
11
+
12
+ # Output paths
13
+ out_data_file = "./output/preprocess/3/Endometriosis/GSE138297.csv"
14
+ out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE138297.csv"
15
+ out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE138297.csv"
16
+ json_path = "./output/preprocess/3/Endometriosis/cohort_info.json"
17
+
18
+ # Get file paths
19
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
20
+
21
+ # Extract background info and clinical data
22
+ background_info, clinical_data = get_background_and_clinical_data(matrix_file)
23
+
24
+ # Get unique values per clinical feature
25
+ sample_characteristics = get_unique_values_by_row(clinical_data)
26
+
27
+ # Print background info
28
+ print("Dataset Background Information:")
29
+ print(f"{background_info}\n")
30
+
31
+ # Print sample characteristics
32
+ print("Sample Characteristics:")
33
+ for feature, values in sample_characteristics.items():
34
+ print(f"Feature: {feature}")
35
+ print(f"Values: {values}\n")
36
+ # 1. Gene Expression Data Availability
37
+ is_gene_available = False # Gene expression data measures IBS response, not suitable for Endometriosis study
38
+
39
+ # 2.1 Data Availability
40
+ trait_row = None # No Endometriosis data available in this IBS study
41
+ age_row = 3 # Age data in years
42
+ gender_row = 1 # Gender data encoded as binary
43
+
44
+ # 2.2 Data Type Conversion Functions
45
+ def convert_trait(value):
46
+ return None # Not needed since trait data is unavailable
47
+
48
+ def convert_age(value):
49
+ if value is None:
50
+ return None
51
+ try:
52
+ return float(value.split(': ')[-1].strip())
53
+ except:
54
+ return None
55
+
56
+ def convert_gender(value):
57
+ if value is None:
58
+ return None
59
+ try:
60
+ # Value is already encoded as we want (female=1, male=0)
61
+ return int(value.split(': ')[-1].strip())
62
+ except:
63
+ return None
64
+
65
+ # 3. Save Metadata
66
+ validate_and_save_cohort_info(is_final=False,
67
+ cohort=cohort,
68
+ info_path=json_path,
69
+ is_gene_available=is_gene_available,
70
+ is_trait_available=trait_row is not None)
71
+
72
+ # 4. Clinical Feature Extraction
73
+ # Skip since trait_row is None
74
+ # Get file paths
75
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
76
+
77
+ # Extract gene expression data from matrix file
78
+ gene_data = get_genetic_data(matrix_file)
79
+
80
+ # Print first 20 row IDs and shape of data to help debug
81
+ print("Shape of gene expression data:", gene_data.shape)
82
+ print("\nFirst few rows of data:")
83
+ print(gene_data.head())
84
+ print("\nFirst 20 gene/probe identifiers:")
85
+ print(gene_data.index[:20])
86
+
87
+ # Inspect a snippet of raw file to verify identifier format
88
+ import gzip
89
+ with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
90
+ lines = []
91
+ for i, line in enumerate(f):
92
+ if "!series_matrix_table_begin" in line:
93
+ # Get the next 5 lines after the marker
94
+ for _ in range(5):
95
+ lines.append(next(f).strip())
96
+ break
97
+ print("\nFirst few lines after matrix marker in raw file:")
98
+ for line in lines:
99
+ print(line)
100
+ # The gene identifiers are numeric IDs starting with 16650xxx
101
+ # These are not standard human gene symbols and need to be mapped
102
+ requires_gene_mapping = True
103
+ # Extract gene annotation data
104
+ gene_metadata = get_gene_annotation(soft_file)
105
+
106
+ # Preview the annotation data
107
+ print("Column names:", gene_metadata.columns.tolist())
108
+ print("\nFirst few rows preview:")
109
+ print(preview_df(gene_metadata))
110
+ # Get file paths and load initial gene expression data
111
+ soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
112
+ gene_data = get_genetic_data(matrix_file)
113
+
114
+ # Get gene mapping dataframe from annotation data
115
+ # 'ID' column in metadata matches IDs in expression data
116
+ # 'gene_assignment' contains gene symbols, but needs parsing
117
+ mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')
118
+
119
+ # Apply gene mapping to expression data
120
+ gene_data = apply_gene_mapping(gene_data, mapping_data)
121
+
122
+ # Normalize gene symbols to official ones
123
+ gene_data = normalize_gene_symbols_in_index(gene_data)
124
+ # 1. Save normalized gene data
125
+ gene_data = normalize_gene_symbols_in_index(gene_data)
126
+ gene_data.to_csv(out_gene_data_file)
127
+
128
+ # 2. Validate and save cohort info
129
+ is_usable = validate_and_save_cohort_info(
130
+ is_final=True,
131
+ cohort=cohort,
132
+ info_path=json_path,
133
+ is_gene_available=True,
134
+ is_trait_available=False, # Changed to False since trait data isn't available
135
+ is_biased=None, # Not applicable since trait isn't available
136
+ df=None, # No linked data to provide
137
+ note="Dataset contains gene expression data but lacks endometriosis trait information."
138
+ )