File size: 4,491 Bytes
ff3b0fa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Endometrioid_Cancer"
cohort = "GSE73614"
# Input paths
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73614"
# Output paths
out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73614.csv"
out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73614.csv"
out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73614.csv"
json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"
# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values for each feature (row) in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the series summary mentioning "transcriptional profile" and "gene expression signatures",
# this dataset appears to contain gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# We cannot reliably determine case/control status from tissue field, so trait data is not available
trait_row = None
age_row = None
gender_row = None
def convert_trait(value: str) -> Optional[int]:
if value is None:
return None
val = value.split(": ")[-1].strip().lower()
if "endometrioid" in val:
return 1
elif val in ["healthy", "normal", "benign"]:
return 0
return None
def convert_age(value: str) -> Optional[float]:
if value is None:
return None
val = value.split(": ")[-1].strip()
try:
return float(val)
except:
return None
def convert_gender(value: str) -> Optional[int]:
if value is None:
return None
val = value.split(": ")[-1].strip().lower()
if val in ["female", "f"]:
return 0
elif val in ["male", "m"]:
return 1
return None
# 3. Save Metadata
# Initial filtering - trait data not available
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)
# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])
print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These appear to be Agilent probe IDs (e.g. A_23_P100001) rather than gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file)
# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. From the preview, we can see that 'ID' contains probe IDs like A_23_P100001
# and 'GENE_SYMBOL' contains human gene symbols
# 2. Get mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')
# 3. Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, gene_mapping)
# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# Final validation with the gene expression data
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=True, # No trait data means biased for our purpose
df=gene_data,
note="Gene expression data available but no trait information could be extracted"
) |