File size: 4,491 Bytes
ff3b0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Endometrioid_Cancer"
cohort = "GSE73614"

# Input paths
in_trait_dir = "../DATA/GEO/Endometrioid_Cancer"
in_cohort_dir = "../DATA/GEO/Endometrioid_Cancer/GSE73614"

# Output paths
out_data_file = "./output/preprocess/3/Endometrioid_Cancer/GSE73614.csv"
out_gene_data_file = "./output/preprocess/3/Endometrioid_Cancer/gene_data/GSE73614.csv"
out_clinical_data_file = "./output/preprocess/3/Endometrioid_Cancer/clinical_data/GSE73614.csv"
json_path = "./output/preprocess/3/Endometrioid_Cancer/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
# Based on the series summary mentioning "transcriptional profile" and "gene expression signatures",
# this dataset appears to contain gene expression data
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# We cannot reliably determine case/control status from tissue field, so trait data is not available
trait_row = None
age_row = None  
gender_row = None

def convert_trait(value: str) -> Optional[int]:
    if value is None:
        return None
    val = value.split(": ")[-1].strip().lower()
    if "endometrioid" in val:
        return 1
    elif val in ["healthy", "normal", "benign"]:
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    if value is None:
        return None
    val = value.split(": ")[-1].strip()
    try:
        return float(val)
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    if value is None:
        return None
    val = value.split(": ")[-1].strip().lower()
    if val in ["female", "f"]:
        return 0
    elif val in ["male", "m"]:
        return 1
    return None

# 3. Save Metadata
# Initial filtering - trait data not available
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=is_trait_available
)

# 4. Clinical Feature Extraction
# Skip since trait_row is None
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These appear to be Agilent probe IDs (e.g. A_23_P100001) rather than gene symbols
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# 1. From the preview, we can see that 'ID' contains probe IDs like A_23_P100001
# and 'GENE_SYMBOL' contains human gene symbols

# 2. Get mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_metadata, prob_col='ID', gene_col='GENE_SYMBOL')

# 3. Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_df, gene_mapping)

# Preview results
print("Gene expression data shape:", gene_data.shape)
print("\nFirst few genes and samples:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# Final validation with the gene expression data
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=False,
    is_biased=True,  # No trait data means biased for our purpose
    df=gene_data,
    note="Gene expression data available but no trait information could be extracted"
)