File size: 8,927 Bytes
ff3b0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Endometriosis"
cohort = "GSE145702"

# Input paths
in_trait_dir = "../DATA/GEO/Endometriosis"
in_cohort_dir = "../DATA/GEO/Endometriosis/GSE145702"

# Output paths
out_data_file = "./output/preprocess/3/Endometriosis/GSE145702.csv"
out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/GSE145702.csv"
out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/GSE145702.csv"
json_path = "./output/preprocess/3/Endometriosis/cohort_info.json"

# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
is_gene_available = True  # Dataset contains gene transcription data

# 2.1 Data Availability & 2.2 Data Type Conversion
# Trait (Endometriosis)
trait_row = 2  # Found in 'disease state' row

def convert_trait(x):
    if pd.isna(x) or ':' not in x:
        return None
    value = x.split(': ')[1].strip()
    if 'Normal' in value:
        return 0
    elif 'Endometriosis' in value:
        return 1
    return None

# Gender - constant feature (all female)
gender_row = None

def convert_gender(x):
    return None

# Age - not available
age_row = None

def convert_age(x):
    return None

# 3. Save Metadata
is_initial_valid = validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
if trait_row is not None:
    clinical_features = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the extracted features
    preview = preview_df(clinical_features)
    
    # Save clinical features
    clinical_features.to_csv(out_clinical_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)

# Print first 20 row IDs and shape of data to help debug 
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])

# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
    lines = []
    for i, line in enumerate(f):
        if "!series_matrix_table_begin" in line:
            # Get the next 5 lines after the marker
            for _ in range(5):
                lines.append(next(f).strip())
            break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
    print(line)
# Based on the gene identifiers shown (7892501, 7892502, etc.), these appear to be Illumina BeadArray probe IDs 
# rather than standard human gene symbols. They need to be mapped to their corresponding gene symbols.
requires_gene_mapping = True
# Extract gene annotation data
gene_metadata = get_gene_annotation(soft_file)

# Preview the annotation data 
print("Column names:", gene_metadata.columns.tolist())
print("\nFirst few rows preview:")
print(preview_df(gene_metadata))
# Extract probe ID to gene symbol mapping
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'gene_assignment')

# Apply mapping to convert probe measurements to gene expression
gene_data = apply_gene_mapping(gene_data, mapping_data)

# Preview the mapped data
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
print("\nFirst few gene symbols:")
print(gene_data.index[:20])
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_features = clinical_features.T  # Transpose to align with gene data
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells."
)

# 6. Save if usable
if is_usable:
    linked_data.to_csv(out_data_file)
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data 
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)

# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")

# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
    print(f"Feature: {feature}")
    print(f"Values: {values}\n")
# 1. Gene Expression Data Availability
# Yes, this dataset studies gene transcription and contains genome-wide data
is_gene_available = True

# 2. Data Availability and Conversion Functions
# 2.1 Row identifiers
trait_row = 2  # disease state
gender_row = 0  # gender information is available but is constant (all Female)
age_row = None  # no age information available

# 2.2 Conversion Functions
def convert_trait(value: str) -> Optional[int]:
    """Convert disease state to binary: 1 for Endometriosis, 0 for Normal"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if 'endometriosis' in value:
        return 1
    elif 'normal' in value:
        return 0
    return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary: 0 for Female, 1 for Male"""
    if not value or ':' not in value:
        return None
    value = value.split(':')[1].strip().lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# No convert_age function needed since age data is not available

# 3. Save Metadata
# Initial filtering - only checks data availability
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=trait_row is not None
)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we need to extract clinical features
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the processed clinical data
print("Preview of processed clinical data:")
print(preview_df(selected_clinical))

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# 1. Normalize gene symbols
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Re-extract clinical features and link with genetic data
selected_clinical = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 3. Handle missing values
linked_data = handle_missing_values(linked_data, trait)

# 4. Check for bias  
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 5. Validate and save cohort info
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note="Study examining expression profiles in endometriotic cyst stromal cells versus normal endometrial stromal cells."
)

# 6. Save if usable
if is_usable:
    linked_data.to_csv(out_data_file)