File size: 7,999 Bytes
ff3b0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Endometriosis"

# Input paths
tcga_root_dir = "../DATA/TCGA"

# Output paths
out_data_file = "./output/preprocess/3/Endometriosis/TCGA.csv"
out_gene_data_file = "./output/preprocess/3/Endometriosis/gene_data/TCGA.csv"
out_clinical_data_file = "./output/preprocess/3/Endometriosis/clinical_data/TCGA.csv"
json_path = "./output/preprocess/3/Endometriosis/cohort_info.json"

# Select UCEC cohort as it's related to endometrial conditions
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)"
cohort_dir = os.path.join(tcga_root_dir, selected_cohort)

# Get file paths for clinical and genetic data
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)

# Load the data files
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')

# Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Define candidate columns for age and gender
candidate_age_cols = ['age_at_initial_pathologic_diagnosis']
candidate_gender_cols = ['gender']

# Check directory and files
import os

cohort_dir = os.path.join(tcga_root_dir, "TCGA_Endometrioid_Cancer_(UCEC)")

# Read the clinical data file 
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0)

# Extract and preview candidate age columns
age_preview = {}
if candidate_age_cols:
    age_data = clinical_df[candidate_age_cols]
    age_preview = preview_df(age_data)
    print("\nAge column preview:")
    print(age_preview)

# Extract and preview candidate gender columns
gender_preview = {}
if candidate_gender_cols:
    gender_data = clinical_df[candidate_gender_cols]
    gender_preview = preview_df(gender_data)
    print("\nGender column preview:")
    print(gender_preview)
candidate_age_cols = ["_AGE", "AGE", "age", "Age", "age_at_initial_pathologic_diagnosis"]
candidate_gender_cols = ["_GENDER", "GENDER", "gender", "Gender", "SEX", "sex", "Sex"]

# Since we have defined candidate columns but don't have clinical data to preview yet,
# keep empty placeholders for preview variables
age_preview = {} 
gender_preview = {}
# Since we need the candidate columns and their preview values from the previous step,
# we should raise an error to indicate missing required input
raise ValueError("Missing required input: Need candidate demographic columns and their preview values from the previous step to make informed column selection.")
# Select UCEC cohort as it's related to endometrial conditions
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)"
cohort_dir = os.path.join(tcga_root_dir, selected_cohort)

# Get file paths for clinical and genetic data
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)

# Load the data files
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')

# Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Define candidate columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis']
candidate_gender_cols = ['gender']

# Get data files directly from root directory 
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir)

# Read clinical data
clinical_df = pd.read_csv(clinical_file_path, index_col=0)

# Extract and preview age columns if any exist
if candidate_age_cols:
    age_preview = clinical_df[candidate_age_cols].head().to_dict('list')
    print("Age columns preview:", age_preview)

# Extract and preview gender columns if any exist  
if candidate_gender_cols:
    gender_preview = clinical_df[candidate_gender_cols].head().to_dict('list')
    print("Gender columns preview:", gender_preview)
# Select UCEC cohort as it's related to endometrial conditions
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)"
cohort_dir = os.path.join(tcga_root_dir, selected_cohort)

# Get file paths for clinical and genetic data
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)

# Load the data files
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')

# Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Identify candidate columns
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'days_to_birth']
candidate_gender_cols = ['gender']

# Get correct file paths using helper function
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir)

# Read clinical data
clinical_data = pd.read_csv(clinical_file_path, index_col=0, sep='\t')

# Extract candidate columns
age_data = clinical_data[candidate_age_cols]
gender_data = clinical_data[candidate_gender_cols]

# Preview data 
print("Age columns preview:")
print(preview_df(age_data))
print("\nGender columns preview:")
print(preview_df(gender_data))
# Select UCEC cohort as it's related to endometrial conditions
selected_cohort = "TCGA_Endometrioid_Cancer_(UCEC)"
cohort_dir = os.path.join(tcga_root_dir, selected_cohort)

# Get file paths for clinical and genetic data
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)

# Load the data files
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')

# Print clinical data columns
print("Clinical data columns:")
print(clinical_df.columns.tolist())
# Identify candidate columns for age and gender
candidate_age_cols = ['age_at_initial_pathologic_diagnosis']
candidate_gender_cols = ['gender']

# Load the clinical data file directly from tcga_root_dir
clinical_file_path, _ = tcga_get_relevant_filepaths(tcga_root_dir)
clinical_df = pd.read_csv(clinical_file_path, index_col=0)

# Preview age columns
if candidate_age_cols:
    age_preview = clinical_df[candidate_age_cols].head()
    print("Age columns preview:")
    print(preview_df(age_preview))

# Preview gender columns  
if candidate_gender_cols:
    gender_preview = clinical_df[candidate_gender_cols].head() 
    print("\nGender columns preview:")
    print(preview_df(gender_preview))
# Set default values for demographic columns
age_col = "age_at_initial_pathologic_diagnosis"
gender_col = "gender"

# Print chosen columns
print(f"Selected age column: {age_col}")
print(f"Selected gender column: {gender_col}")
# 1. Extract and standardize clinical features
# Create trait labels from sample IDs (01-09: tumor=1, 10-19: normal=0)
clinical_features = tcga_select_clinical_features(
    clinical_df, 
    trait=trait,
    age_col='age_at_initial_pathologic_diagnosis',
    gender_col='gender'
)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_features.to_csv(out_clinical_data_file)

# 2. Normalize gene symbols and save
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_df.to_csv(out_gene_data_file)

# 3. Link clinical and genetic data on sample IDs
linked_data = pd.merge(
    clinical_features, 
    normalized_gene_df.T,
    left_index=True,
    right_index=True,
    how='inner'
)

# 4. Handle missing values systematically 
linked_data = handle_missing_values(linked_data, trait)

# 5. Check for bias in trait and demographic features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate data quality and save cohort info
note = "Contains molecular data from tumor and normal samples with patient demographics."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort="TCGA",
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=trait_biased,
    df=linked_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)