File size: 6,088 Bytes
ff3b0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Epilepsy"
cohort = "GSE123993"

# Input paths
in_trait_dir = "../DATA/GEO/Epilepsy"
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE123993"

# Output paths
out_data_file = "./output/preprocess/3/Epilepsy/GSE123993.csv"
out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE123993.csv"
out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE123993.csv"
json_path = "./output/preprocess/3/Epilepsy/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# The dataset uses Affymetrix HuGene arrays for whole genome expression profiling,
# so it contains gene expression data
is_gene_available = True

# 2.1 Data Availability
# Trait (intervention group) is in row 3
trait_row = 3
# Age is not explicitly recorded (all are elderly > 65 but exact age unknown)
age_row = None 
# Gender is in row 1
gender_row = 1

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    # Extract value after colon
    if ':' in value:
        value = value.split(':')[1].strip()
    # Convert to binary: 1 for treatment, 0 for placebo
    if '25-hydroxycholecalciferol' in value or '25(OH)D3' in value:
        return 1
    elif 'Placebo' in value:
        return 0
    return None

def convert_gender(value):
    if ':' in value:
        value = value.split(':')[1].strip()
    # Convert to binary: 0 for female, 1 for male    
    if value.lower() == 'female':
        return 0
    elif value.lower() == 'male':
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Extract clinical features since trait_row is not None
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                  trait=trait,
                                                  trait_row=trait_row,
                                                  convert_trait=convert_trait,
                                                  gender_row=gender_row,
                                                  convert_gender=convert_gender)

# Preview the clinical data
preview_dict = preview_df(selected_clinical_df)
print("Preview of clinical data:")
print(preview_dict)

# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These IDs appear to be probe IDs from a microarray platform rather than standard gene symbols
# They are numeric identifiers starting with '1665' which is consistent with microarray probe formats
# We will need to map these probe IDs to their corresponding gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
    print(f"\n{col}:")
    print(values)
# 1. Looking at gene annotation data, 'ID' column matches identifiers in gene expression data,
#    and 'gene_assignment' contains gene symbols

# 2. Extract mapping between probe IDs and gene symbols
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# 3. Apply mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# 4. Normalize gene symbols to handle synonyms
gene_data = normalize_gene_symbols_in_index(gene_data)

# 5. Save gene expression data
gene_data.to_csv(out_gene_data_file)

# Preview gene data
preview_dict = preview_df(gene_data)
print("Preview of gene data:")
for i, (col, values) in enumerate(preview_dict.items()):
    if i >= 5:  # limit to first 5 items
        break
    print(f"\n{col}:")
    print(values)
# Read the processed clinical and gene data files 
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = pd.read_csv(out_gene_data_file, index_col=0)  # Already normalized in step 6

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate data quality and save cohort info
note = ("This dataset studies vitamin D supplementation effects on skeletal muscle transcriptome. "
        "Data quality is acceptable but the study size is relatively small.")
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path, 
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")