File size: 5,441 Bytes
ff3b0fa
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Epilepsy"
cohort = "GSE143272"

# Input paths
in_trait_dir = "../DATA/GEO/Epilepsy"
in_cohort_dir = "../DATA/GEO/Epilepsy/GSE143272"

# Output paths
out_data_file = "./output/preprocess/3/Epilepsy/GSE143272.csv"
out_gene_data_file = "./output/preprocess/3/Epilepsy/gene_data/GSE143272.csv"
out_clinical_data_file = "./output/preprocess/3/Epilepsy/clinical_data/GSE143272.csv"
json_path = "./output/preprocess/3/Epilepsy/cohort_info.json"

# Get paths to the SOFT and matrix files
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)

# Get background info and clinical data from matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file)

# Get unique values for each feature (row) in clinical data 
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("=== Dataset Background Information ===")
print(background_info)
print("\n=== Sample Characteristics ===")
print(json.dumps(unique_values_dict, indent=2))
# 1. Gene Expression Data Availability
is_gene_available = True  # Based on series title and summary mentioning mRNA expression

# 2.1 Data Row Identification
trait_row = 4  # drug response row contains trait data
age_row = 0   # age data is in row 0
gender_row = 1  # gender data is in row 1

# 2.2 Data Type Conversion Functions 
def convert_trait(value: str) -> Optional[int]:
    """Convert drug response to binary: 1 for responder, 0 for non-responder"""
    if not value or value == '-':
        return None
    value = value.split(': ')[-1].strip()
    if value == 'Responder':
        return 1
    elif value == 'Non-responder':
        return 0
    return None

def convert_age(value: str) -> Optional[float]:
    """Convert age string to float"""
    if not value:
        return None
    try:
        return float(value.split(': ')[-1])
    except:
        return None

def convert_gender(value: str) -> Optional[int]:
    """Convert gender to binary: 0 for female, 1 for male"""
    if not value:
        return None
    value = value.split(': ')[-1].lower()
    if value == 'female':
        return 0
    elif value == 'male':
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
if trait_row is not None:
    selected_clinical = geo_select_clinical_features(
        clinical_df=clinical_data,
        trait=trait,
        trait_row=trait_row,
        convert_trait=convert_trait,
        age_row=age_row,
        convert_age=convert_age,
        gender_row=gender_row,
        convert_gender=convert_gender
    )
    
    # Preview the data
    preview = preview_df(selected_clinical)
    print("Preview of selected clinical features:")
    print(preview)
    
    # Save to CSV
    selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data from matrix file
genetic_df = get_genetic_data(matrix_file)

# Print DataFrame shape and first 20 row IDs
print("DataFrame shape:", genetic_df.shape)
print("\nFirst 20 row IDs:")
print(genetic_df.index[:20])

print("\nPreview of first few rows and columns:")
print(genetic_df.head().iloc[:, :5])
# These rows IDs starting with "ILMN_" are Illumina probe IDs, not gene symbols
# They need to be mapped to HGNC gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation data, excluding control probe lines
gene_metadata = get_gene_annotation(soft_file) 

# Preview filtered annotation data
print("Column names:")
print(gene_metadata.columns)
print("\nPreview of gene annotation data:")
print(preview_df(gene_metadata))
# Extract gene identifier and gene symbol columns for mapping
mapping_data = get_gene_mapping(gene_metadata, 'ID', 'Symbol')

# Apply gene mapping to convert probe-level data to gene-level data
gene_data = apply_gene_mapping(genetic_df, mapping_data)

# Preview result
print("Shape of gene expression data:", gene_data.shape)
print("\nPreview of first few rows and columns:")
print(gene_data.head().iloc[:, :5])
# 1. Normalize gene symbols and save
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)

# 2. Link clinical and genetic data
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# 3. Handle missing values 
linked_data = handle_missing_values(linked_data, 'Epilepsy') 

# 4. Check for biased features
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Epilepsy')

# 5. Final validation and metadata saving
is_usable = validate_and_save_cohort_info(
    is_final=True, 
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True, 
    is_biased=trait_biased,
    df=linked_data,
    note="Dataset contains gene expression data comparing epilepsy and other brain conditions"
)

# 6. Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)