File size: 5,038 Bytes
5bd5338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Esophageal_Cancer"
cohort = "GSE156915"

# Input paths
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE156915"

# Output paths
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE156915.csv"
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE156915.csv"
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE156915.csv"
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# From the background info, we can see this is a gene expression study investigating
# DNA damage immune response in colorectal cancer
is_gene_available = True

# 2.1 Data Availability 
# Looking at the sample characteristics:
# - Row 0 shows DDIR status which indicates DNA damage response status
trait_row = 0  
# Age and gender info not available in sample characteristics
age_row = None
gender_row = None

# 2.2 Data Type Conversion Functions
def convert_trait(x):
    if pd.isna(x):
        return None
    # Extract value after colon and strip whitespace
    val = x.split(':')[1].strip()
    # DDIR NEG = control = 0, DDIR POS = case = 1
    if 'NEG' in val:
        return 0
    elif 'POS' in val:
        return 1
    return None

def convert_age(x):
    # Not available
    return None

def convert_gender(x):
    # Not available 
    return None

# 3. Save Initial Metadata
is_trait_available = trait_row is not None
_ = validate_and_save_cohort_info(is_final=False, 
                                cohort=cohort,
                                info_path=json_path,
                                is_gene_available=is_gene_available,
                                is_trait_available=is_trait_available)

# 4. Extract Clinical Features
if trait_row is not None:
    clinical_df = geo_select_clinical_features(clinical_data,
                                            trait=trait,
                                            trait_row=trait_row,
                                            convert_trait=convert_trait,
                                            age_row=age_row,
                                            convert_age=convert_age, 
                                            gender_row=gender_row,
                                            convert_gender=convert_gender)
    
    # Preview the extracted features
    preview = preview_df(clinical_df)
    print("Preview of clinical features:")
    print(preview)
    
    # Save to CSV
    clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These appear to be human gene symbols, with some RNA genes and pseudogenes
# The identifiers match official HGNC gene symbols and nomenclature patterns
requires_gene_mapping = False
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data) 
normalized_gene_data.to_csv(out_gene_data_file)

# Read the processed clinical and gene data files
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
gene_data = pd.read_csv(out_gene_data_file, index_col=0)

# Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)

# Handle missing values systematically 
linked_data = handle_missing_values(linked_data, trait)

# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate data quality and save cohort info
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
        "comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")