Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +26 -0
- p3/preprocess/Depression/gene_data/TCGA.csv +3 -0
- p3/preprocess/Endometriosis/TCGA.csv +3 -0
- p3/preprocess/Endometriosis/gene_data/TCGA.csv +3 -0
- p3/preprocess/Epilepsy/gene_data/GSE123993.csv +3 -0
- p3/preprocess/Epilepsy/gene_data/GSE143272.csv +3 -0
- p3/preprocess/Epilepsy/gene_data/GSE29796.csv +3 -0
- p3/preprocess/Epilepsy/gene_data/GSE65106.csv +3 -0
- p3/preprocess/Epilepsy/gene_data/GSE74571.csv +3 -0
- p3/preprocess/Esophageal_Cancer/GSE100843.csv +3 -0
- p3/preprocess/Esophageal_Cancer/GSE75241.csv +3 -0
- p3/preprocess/Esophageal_Cancer/TCGA.csv +3 -0
- p3/preprocess/Esophageal_Cancer/clinical_data/GSE75241.csv +2 -0
- p3/preprocess/Esophageal_Cancer/clinical_data/GSE77790.csv +34 -0
- p3/preprocess/Esophageal_Cancer/code/GSE100843.py +158 -0
- p3/preprocess/Esophageal_Cancer/code/GSE104958.py +147 -0
- p3/preprocess/Esophageal_Cancer/code/GSE107754.py +167 -0
- p3/preprocess/Esophageal_Cancer/code/GSE131027.py +152 -0
- p3/preprocess/Esophageal_Cancer/code/GSE156915.py +144 -0
- p3/preprocess/Esophageal_Cancer/code/GSE218109.py +187 -0
- p3/preprocess/Esophageal_Cancer/code/GSE55857.py +99 -0
- p3/preprocess/Esophageal_Cancer/code/GSE66258.py +90 -0
- p3/preprocess/Esophageal_Cancer/code/GSE75241.py +160 -0
- p3/preprocess/Esophageal_Cancer/code/GSE77790.py +227 -0
- p3/preprocess/Esophageal_Cancer/code/TCGA.py +115 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv +3 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE104958.csv +3 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE107754.csv +3 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE131027.csv +3 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE218109.csv +1 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv +3 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE77790.csv +1 -0
- p3/preprocess/Esophageal_Cancer/gene_data/TCGA.csv +3 -0
- p3/preprocess/Essential_Thrombocythemia/GSE103237.csv +0 -0
- p3/preprocess/Essential_Thrombocythemia/GSE12295.csv +0 -0
- p3/preprocess/Essential_Thrombocythemia/GSE159514.csv +3 -0
- p3/preprocess/Essential_Thrombocythemia/GSE174060.csv +0 -0
- p3/preprocess/Essential_Thrombocythemia/GSE55976.csv +0 -0
- p3/preprocess/Essential_Thrombocythemia/GSE57793.csv +3 -0
- p3/preprocess/Essential_Thrombocythemia/GSE61629.csv +0 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE103176.csv +3 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE103237.csv +3 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE12295.csv +2 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE159514.csv +2 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv +4 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE55976.csv +2 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE57793.csv +2 -0
- p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE61629.csv +2 -0
- p3/preprocess/Essential_Thrombocythemia/code/GSE103176.py +232 -0
- p3/preprocess/Essential_Thrombocythemia/code/GSE103237.py +172 -0
.gitattributes
CHANGED
@@ -1664,3 +1664,29 @@ p3/preprocess/Endometriosis/GSE51981.csv filter=lfs diff=lfs merge=lfs -text
|
|
1664 |
p3/preprocess/Breast_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1665 |
p3/preprocess/Epilepsy/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
|
1666 |
p3/preprocess/Endometriosis/gene_data/GSE51981.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1664 |
p3/preprocess/Breast_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1665 |
p3/preprocess/Epilepsy/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
|
1666 |
p3/preprocess/Endometriosis/gene_data/GSE51981.csv filter=lfs diff=lfs merge=lfs -text
|
1667 |
+
p3/preprocess/Epilepsy/gene_data/GSE143272.csv filter=lfs diff=lfs merge=lfs -text
|
1668 |
+
p3/preprocess/Epilepsy/gene_data/GSE29796.csv filter=lfs diff=lfs merge=lfs -text
|
1669 |
+
p3/preprocess/Epilepsy/gene_data/GSE123993.csv filter=lfs diff=lfs merge=lfs -text
|
1670 |
+
p3/preprocess/Epilepsy/gene_data/GSE74571.csv filter=lfs diff=lfs merge=lfs -text
|
1671 |
+
p3/preprocess/Endometriosis/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1672 |
+
p3/preprocess/Epilepsy/gene_data/GSE65106.csv filter=lfs diff=lfs merge=lfs -text
|
1673 |
+
p3/preprocess/Esophageal_Cancer/GSE75241.csv filter=lfs diff=lfs merge=lfs -text
|
1674 |
+
p3/preprocess/Esophageal_Cancer/GSE100843.csv filter=lfs diff=lfs merge=lfs -text
|
1675 |
+
p3/preprocess/Esophageal_Cancer/gene_data/GSE104958.csv filter=lfs diff=lfs merge=lfs -text
|
1676 |
+
p3/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv filter=lfs diff=lfs merge=lfs -text
|
1677 |
+
p3/preprocess/Endometriosis/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1678 |
+
p3/preprocess/Esophageal_Cancer/gene_data/GSE107754.csv filter=lfs diff=lfs merge=lfs -text
|
1679 |
+
p3/preprocess/Depression/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1680 |
+
p3/preprocess/Esophageal_Cancer/gene_data/GSE131027.csv filter=lfs diff=lfs merge=lfs -text
|
1681 |
+
p3/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv filter=lfs diff=lfs merge=lfs -text
|
1682 |
+
p3/preprocess/Essential_Thrombocythemia/GSE57793.csv filter=lfs diff=lfs merge=lfs -text
|
1683 |
+
p3/preprocess/Essential_Thrombocythemia/GSE159514.csv filter=lfs diff=lfs merge=lfs -text
|
1684 |
+
p3/preprocess/Essential_Thrombocythemia/gene_data/GSE103237.csv filter=lfs diff=lfs merge=lfs -text
|
1685 |
+
p3/preprocess/Esophageal_Cancer/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1686 |
+
p3/preprocess/Essential_Thrombocythemia/gene_data/GSE174060.csv filter=lfs diff=lfs merge=lfs -text
|
1687 |
+
p3/preprocess/Essential_Thrombocythemia/gene_data/GSE61629.csv filter=lfs diff=lfs merge=lfs -text
|
1688 |
+
p3/preprocess/Essential_Thrombocythemia/gene_data/GSE57793.csv filter=lfs diff=lfs merge=lfs -text
|
1689 |
+
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
|
1690 |
+
p3/preprocess/Esophageal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1691 |
+
p3/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv filter=lfs diff=lfs merge=lfs -text
|
1692 |
+
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/Depression/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca538730424e09dc117dcbf2b9e361e18a559838fbd5166c65c39e001c215c63
|
3 |
+
size 203622702
|
p3/preprocess/Endometriosis/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d538e2fa52d08a897bcadf0285184ced6ecddc85d6df602208a912847e060e62
|
3 |
+
size 60336942
|
p3/preprocess/Endometriosis/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:965772a8ddafe3b0baec55f80b0a37ac57d1cd394c3678a057598d5b214d2edd
|
3 |
+
size 60335341
|
p3/preprocess/Epilepsy/gene_data/GSE123993.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6111dad1e9f5abfbe6f2768c0cd1c1fd1396db43109b545e718dd54b7561f133
|
3 |
+
size 15123583
|
p3/preprocess/Epilepsy/gene_data/GSE143272.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:11b9d688b7c816f77cf4cb2f913fd2d0be6ab7c38198dfa9f4153f033b3e7172
|
3 |
+
size 15847932
|
p3/preprocess/Epilepsy/gene_data/GSE29796.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:4edf231b1d6038cad00622845fdb6c06ada9b682c6e46af24a4183d565ff6de6
|
3 |
+
size 13410616
|
p3/preprocess/Epilepsy/gene_data/GSE65106.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba36a56836f25c628cc7f6721d0b891f0a8f089e9041023fa41adfb38bdd2025
|
3 |
+
size 19281941
|
p3/preprocess/Epilepsy/gene_data/GSE74571.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:e3535ea344d801f0a42c2294e42f2c4bbe0172e4fea404df54a5023c9f660e27
|
3 |
+
size 13432589
|
p3/preprocess/Esophageal_Cancer/GSE100843.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:b9ae145a287823aa97d5f48d34d16a26f80bf7eb489589fc5ef77762366253c0
|
3 |
+
size 28263365
|
p3/preprocess/Esophageal_Cancer/GSE75241.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d70e298eaa7828d17ecd5e325101e457c0b1cf249b7153159f1a38ee94c5b101
|
3 |
+
size 18208964
|
p3/preprocess/Esophageal_Cancer/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2e2f33cc80d4aeb14bac98c498ad2d717e0b6ff3d595627015351df73746975e
|
3 |
+
size 58742434
|
p3/preprocess/Esophageal_Cancer/clinical_data/GSE75241.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1946756,GSM1946757,GSM1946758,GSM1946759,GSM1946760,GSM1946761,GSM1946762,GSM1946763,GSM1946764,GSM1946765,GSM1946766,GSM1946767,GSM1946768,GSM1946769,GSM1946770,GSM1946771,GSM1946772,GSM1946773,GSM1946774,GSM1946775,GSM1946776,GSM1946777,GSM1946778,GSM1946779,GSM1946780,GSM1946781,GSM1946782,GSM1946783,GSM1946784,GSM1946785
|
2 |
+
Esophageal_Cancer,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0
|
p3/preprocess/Esophageal_Cancer/clinical_data/GSE77790.csv
ADDED
@@ -0,0 +1,34 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,Esophageal_Cancer
|
2 |
+
!Sample_geo_accession,0
|
3 |
+
GSM2059404,0
|
4 |
+
GSM2059405,0
|
5 |
+
GSM2059406,0
|
6 |
+
GSM2059407,0
|
7 |
+
GSM2059408,0
|
8 |
+
GSM2059409,0
|
9 |
+
GSM2059410,0
|
10 |
+
GSM2059411,0
|
11 |
+
GSM2059412,0
|
12 |
+
GSM2059413,0
|
13 |
+
GSM2059414,0
|
14 |
+
GSM2059415,0
|
15 |
+
GSM2059416,0
|
16 |
+
GSM2059417,0
|
17 |
+
GSM2059418,0
|
18 |
+
GSM2059419,0
|
19 |
+
GSM2059420,0
|
20 |
+
GSM2059421,0
|
21 |
+
GSM2059422,0
|
22 |
+
GSM2059423,0
|
23 |
+
GSM2059424,0
|
24 |
+
GSM2059425,0
|
25 |
+
GSM2059426,0
|
26 |
+
GSM2059427,0
|
27 |
+
GSM2059428,0
|
28 |
+
GSM2059429,0
|
29 |
+
GSM2059430,1
|
30 |
+
GSM2059431,1
|
31 |
+
GSM2059432,0
|
32 |
+
GSM2059433,0
|
33 |
+
GSM2059434,0
|
34 |
+
GSM2059435,0
|
p3/preprocess/Esophageal_Cancer/code/GSE100843.py
ADDED
@@ -0,0 +1,158 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE100843"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE100843"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE100843.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE100843.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE100843.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# From background info, this is a microarray gene expression dataset
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Type Conversion
|
45 |
+
# Trait (Barrett's esophagus):
|
46 |
+
# Available in field 0 as tissue type, where IM indicates disease and NSQ indicates normal
|
47 |
+
trait_row = 0
|
48 |
+
def convert_trait(value: str) -> int:
|
49 |
+
if not value or ':' not in value:
|
50 |
+
return None
|
51 |
+
value = value.split(':')[1].strip().lower()
|
52 |
+
if "barrett" in value:
|
53 |
+
return 1 # Disease tissue
|
54 |
+
elif "normal" in value:
|
55 |
+
return 0 # Normal tissue
|
56 |
+
return None
|
57 |
+
|
58 |
+
# Age: Not available in characteristics
|
59 |
+
age_row = None
|
60 |
+
convert_age = None
|
61 |
+
|
62 |
+
# Gender: Not available in characteristics
|
63 |
+
gender_row = None
|
64 |
+
convert_gender = None
|
65 |
+
|
66 |
+
# 3. Save metadata
|
67 |
+
validate_and_save_cohort_info(
|
68 |
+
is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=(trait_row is not None)
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. Extract clinical features
|
76 |
+
if trait_row is not None:
|
77 |
+
selected_clinical = geo_select_clinical_features(
|
78 |
+
clinical_df=clinical_data,
|
79 |
+
trait=trait,
|
80 |
+
trait_row=trait_row,
|
81 |
+
convert_trait=convert_trait,
|
82 |
+
age_row=age_row,
|
83 |
+
convert_age=convert_age,
|
84 |
+
gender_row=gender_row,
|
85 |
+
convert_gender=convert_gender
|
86 |
+
)
|
87 |
+
|
88 |
+
# Preview the selected features
|
89 |
+
print("Preview of selected clinical features:")
|
90 |
+
print(preview_df(selected_clinical))
|
91 |
+
|
92 |
+
# Save to CSV
|
93 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
94 |
+
# Extract gene expression data
|
95 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
96 |
+
|
97 |
+
# Print first 20 probe IDs
|
98 |
+
print("First 20 probe IDs:")
|
99 |
+
print(genetic_data.index[:20])
|
100 |
+
# The probe IDs are numeric identifiers from an Illumina array, not standard gene symbols
|
101 |
+
# They need to be mapped to proper human gene symbols
|
102 |
+
requires_gene_mapping = True
|
103 |
+
# Extract gene annotation from SOFT file
|
104 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
105 |
+
|
106 |
+
# Preview column names and first few values
|
107 |
+
preview_dict = preview_df(gene_annotation)
|
108 |
+
print("Column names and preview values:")
|
109 |
+
for col, values in preview_dict.items():
|
110 |
+
print(f"\n{col}:")
|
111 |
+
print(values)
|
112 |
+
# Extract mapping between probe IDs and gene symbols
|
113 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
|
114 |
+
|
115 |
+
# Apply gene mapping to convert probe-level data to gene-level data
|
116 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
117 |
+
|
118 |
+
# Save the gene expression data
|
119 |
+
gene_data.to_csv(out_gene_data_file)
|
120 |
+
# Read the gene data that was saved in previous step
|
121 |
+
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
|
122 |
+
|
123 |
+
# 1. Normalize gene symbols and save normalized gene data
|
124 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
125 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
126 |
+
|
127 |
+
# Read the processed clinical and gene data files
|
128 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
129 |
+
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
|
130 |
+
|
131 |
+
# Link clinical and genetic data
|
132 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
133 |
+
|
134 |
+
# Handle missing values systematically
|
135 |
+
linked_data = handle_missing_values(linked_data, trait)
|
136 |
+
|
137 |
+
# Detect bias in trait and demographic features, remove biased demographic features
|
138 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
139 |
+
|
140 |
+
# Validate data quality and save cohort info
|
141 |
+
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
|
142 |
+
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
|
143 |
+
is_usable = validate_and_save_cohort_info(
|
144 |
+
is_final=True,
|
145 |
+
cohort=cohort,
|
146 |
+
info_path=json_path,
|
147 |
+
is_gene_available=True,
|
148 |
+
is_trait_available=True,
|
149 |
+
is_biased=is_biased,
|
150 |
+
df=linked_data,
|
151 |
+
note=note
|
152 |
+
)
|
153 |
+
|
154 |
+
# Save linked data if usable
|
155 |
+
if is_usable:
|
156 |
+
linked_data.to_csv(out_data_file)
|
157 |
+
else:
|
158 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/GSE104958.py
ADDED
@@ -0,0 +1,147 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE104958"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE104958"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE104958.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE104958.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE104958.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# Based on the background info mentioning "DNA microarray data", this dataset contains gene expression data
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Type Conversion
|
45 |
+
# 2.1 Data Availability
|
46 |
+
# Trait (pCR status) is not directly available in sample characteristics,
|
47 |
+
# but needs to be inferred from RNA IDs in a later step
|
48 |
+
trait_row = None # Not available in sample characteristics
|
49 |
+
age_row = None # Age data not available
|
50 |
+
gender_row = None # Gender data not available
|
51 |
+
|
52 |
+
# 2.2 Data Type Conversion Functions
|
53 |
+
def convert_trait(value):
|
54 |
+
# Get sample ID from string
|
55 |
+
if not isinstance(value, str):
|
56 |
+
return None
|
57 |
+
try:
|
58 |
+
# Extract RNA sample number from identifiers
|
59 |
+
rna_id = int(''.join(filter(str.isdigit, value)))
|
60 |
+
# Check if RNA ID is in pCR group based on background info
|
61 |
+
pcr_samples = [1, 4, 7, 10, 12, 17, 24, 29, 35, 43]
|
62 |
+
return 1 if rna_id in pcr_samples else 0
|
63 |
+
except:
|
64 |
+
return None
|
65 |
+
|
66 |
+
# Age and gender conversion functions not needed since data unavailable
|
67 |
+
convert_age = None
|
68 |
+
convert_gender = None
|
69 |
+
|
70 |
+
# 3. Save initial metadata
|
71 |
+
is_trait_available = trait_row is not None
|
72 |
+
validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=is_trait_available
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Clinical feature extraction skipped since trait_row is None
|
81 |
+
# Extract gene expression data
|
82 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
83 |
+
|
84 |
+
# Print first 20 probe IDs
|
85 |
+
print("First 20 probe IDs:")
|
86 |
+
print(genetic_data.index[:20])
|
87 |
+
# These identifiers appear to be probe IDs from a microarray/RNA-seq platform
|
88 |
+
# They are not standard human gene symbols (which would look like BRCA1, TP53, etc)
|
89 |
+
# The format A_19_P* suggests these are likely Agilent array probe IDs that need mapping
|
90 |
+
requires_gene_mapping = True
|
91 |
+
# Extract gene annotation from SOFT file
|
92 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
93 |
+
|
94 |
+
# Preview column names and first few values
|
95 |
+
preview_dict = preview_df(gene_annotation)
|
96 |
+
print("Column names and preview values:")
|
97 |
+
for col, values in preview_dict.items():
|
98 |
+
print(f"\n{col}:")
|
99 |
+
print(values)
|
100 |
+
# Extract probe ID and gene symbol mapping from annotation
|
101 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='GENE_SYMBOL')
|
102 |
+
|
103 |
+
# Apply gene mapping to convert probe-level measurements to gene expression
|
104 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
105 |
+
|
106 |
+
# Print dimensions of original and mapped data
|
107 |
+
print(f"Original probe data dimensions: {genetic_data.shape}")
|
108 |
+
print(f"Mapped gene data dimensions: {gene_data.shape}")
|
109 |
+
# 1. Normalize gene symbols and save normalized gene data
|
110 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
111 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
112 |
+
|
113 |
+
# Create clinical data using sample IDs and convert_trait function
|
114 |
+
sample_ids = normalized_gene_data.columns
|
115 |
+
clinical_data = pd.DataFrame(index=['Esophageal_Cancer'])
|
116 |
+
clinical_data[sample_ids] = [convert_trait(id) for id in sample_ids]
|
117 |
+
clinical_data.to_csv(out_clinical_data_file)
|
118 |
+
|
119 |
+
# Link clinical and genetic data
|
120 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)
|
121 |
+
|
122 |
+
# Handle missing values systematically
|
123 |
+
linked_data = handle_missing_values(linked_data, 'Esophageal_Cancer')
|
124 |
+
|
125 |
+
# Detect bias in trait and demographic features
|
126 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, 'Esophageal_Cancer')
|
127 |
+
|
128 |
+
# Validate data quality and save cohort info
|
129 |
+
note = ("This dataset studies gene expression related to pathological complete response (pCR) "
|
130 |
+
"after neoadjuvant chemotherapy in esophageal cancer. The trait information was derived "
|
131 |
+
"from RNA sample IDs mentioned in the background information.")
|
132 |
+
is_usable = validate_and_save_cohort_info(
|
133 |
+
is_final=True,
|
134 |
+
cohort=cohort,
|
135 |
+
info_path=json_path,
|
136 |
+
is_gene_available=True,
|
137 |
+
is_trait_available=True,
|
138 |
+
is_biased=is_biased,
|
139 |
+
df=linked_data,
|
140 |
+
note=note
|
141 |
+
)
|
142 |
+
|
143 |
+
# Save linked data if usable
|
144 |
+
if is_usable:
|
145 |
+
linked_data.to_csv(out_data_file)
|
146 |
+
else:
|
147 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/GSE107754.py
ADDED
@@ -0,0 +1,167 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE107754"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE107754"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE107754.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE107754.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE107754.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# The background info mentions "whole human genome gene expression microarrays"
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2.1 Data Availability
|
45 |
+
# Trait (cancer) info is in key 2 under "tissue: ..."
|
46 |
+
trait_row = 2
|
47 |
+
# Age is not available in the sample characteristics
|
48 |
+
age_row = None
|
49 |
+
# Gender is in key 0
|
50 |
+
gender_row = 0
|
51 |
+
|
52 |
+
# 2.2 Data Type Conversion Functions
|
53 |
+
def convert_trait(value: str) -> int:
|
54 |
+
"""Convert tissue type to binary indicating if it's esophageal cancer"""
|
55 |
+
if not value or ':' not in value:
|
56 |
+
return None
|
57 |
+
tissue = value.split(':')[1].strip().lower()
|
58 |
+
# Return 1 for esophageal cancer, 0 for other cancers
|
59 |
+
return 1 if 'esophagus cancer' in tissue else 0
|
60 |
+
|
61 |
+
def convert_age(value: str) -> float:
|
62 |
+
"""Convert age string to float"""
|
63 |
+
# No age data available
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_gender(value: str) -> int:
|
67 |
+
"""Convert gender to binary (0=female, 1=male)"""
|
68 |
+
if not value or ':' not in value:
|
69 |
+
return None
|
70 |
+
gender = value.split(':')[1].strip().lower()
|
71 |
+
if gender == 'female':
|
72 |
+
return 0
|
73 |
+
elif gender == 'male':
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save initial validation info
|
78 |
+
_ = validate_and_save_cohort_info(
|
79 |
+
is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=trait_row is not None
|
84 |
+
)
|
85 |
+
|
86 |
+
# 4. Extract clinical features
|
87 |
+
if trait_row is not None:
|
88 |
+
clinical_features = geo_select_clinical_features(
|
89 |
+
clinical_df=clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender
|
97 |
+
)
|
98 |
+
|
99 |
+
# Preview the extracted features
|
100 |
+
preview = preview_df(clinical_features)
|
101 |
+
print("Preview of clinical features:")
|
102 |
+
print(preview)
|
103 |
+
|
104 |
+
# Save to CSV
|
105 |
+
clinical_features.to_csv(out_clinical_data_file)
|
106 |
+
# Extract gene expression data
|
107 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
108 |
+
|
109 |
+
# Print first 20 probe IDs
|
110 |
+
print("First 20 probe IDs:")
|
111 |
+
print(genetic_data.index[:20])
|
112 |
+
# These identifiers are Agilent probe IDs, not HGNC gene symbols
|
113 |
+
# They follow the typical Agilent format "A_23_P######"
|
114 |
+
# Therefore mapping to gene symbols is required
|
115 |
+
requires_gene_mapping = True
|
116 |
+
# Extract gene annotation from SOFT file
|
117 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
118 |
+
|
119 |
+
# Preview column names and first few values
|
120 |
+
preview_dict = preview_df(gene_annotation)
|
121 |
+
print("Column names and preview values:")
|
122 |
+
for col, values in preview_dict.items():
|
123 |
+
print(f"\n{col}:")
|
124 |
+
print(values)
|
125 |
+
# 1. The 'ID' column in gene_annotation matches the probe IDs in genetic_data
|
126 |
+
# The 'GENE_SYMBOL' column contains the corresponding gene symbols
|
127 |
+
probe_col = 'ID'
|
128 |
+
symbol_col = 'GENE_SYMBOL'
|
129 |
+
|
130 |
+
# 2. Get gene mapping dataframe
|
131 |
+
gene_mapping = get_gene_mapping(gene_annotation, probe_col, symbol_col)
|
132 |
+
|
133 |
+
# 3. Apply gene mapping to convert probe-level data to gene expression data
|
134 |
+
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
|
135 |
+
# 1. Normalize gene symbols and save normalized gene data
|
136 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
137 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
138 |
+
|
139 |
+
# 2. Link clinical and genetic data
|
140 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
141 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
|
142 |
+
|
143 |
+
# 3. Handle missing values systematically
|
144 |
+
linked_data = handle_missing_values(linked_data, trait)
|
145 |
+
|
146 |
+
# 4. Detect bias in trait and demographic features, remove biased demographic features
|
147 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
148 |
+
|
149 |
+
# 5. Validate data quality and save cohort info
|
150 |
+
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
|
151 |
+
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
|
152 |
+
is_usable = validate_and_save_cohort_info(
|
153 |
+
is_final=True,
|
154 |
+
cohort=cohort,
|
155 |
+
info_path=json_path,
|
156 |
+
is_gene_available=True,
|
157 |
+
is_trait_available=True,
|
158 |
+
is_biased=is_biased,
|
159 |
+
df=linked_data,
|
160 |
+
note=note
|
161 |
+
)
|
162 |
+
|
163 |
+
# 6. Save linked data if usable
|
164 |
+
if is_usable:
|
165 |
+
linked_data.to_csv(out_data_file)
|
166 |
+
else:
|
167 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/GSE131027.py
ADDED
@@ -0,0 +1,152 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE131027"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE131027"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE131027.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE131027.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE131027.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
is_gene_available = True # Based on background info showing expression features analysis
|
42 |
+
|
43 |
+
# 2. Variable Availability and Type Conversion
|
44 |
+
# 2.1 Data Availability
|
45 |
+
trait_row = 1 # Cancer type is recorded in row 1
|
46 |
+
age_row = None # Age data not available
|
47 |
+
gender_row = None # Gender data not available
|
48 |
+
|
49 |
+
# 2.2 Data Type Conversion Functions
|
50 |
+
def convert_trait(value: str) -> int:
|
51 |
+
"""Convert cancer type to binary for esophageal cancer"""
|
52 |
+
if pd.isna(value) or ':' not in value:
|
53 |
+
return None
|
54 |
+
cancer_type = value.split(': ')[1].lower()
|
55 |
+
# Match variations of esophageal cancer spelling
|
56 |
+
if 'oesophageal' in cancer_type or 'esophageal' in cancer_type:
|
57 |
+
return 1
|
58 |
+
return 0
|
59 |
+
|
60 |
+
def convert_age(value: str) -> float:
|
61 |
+
return None # Not used since age data unavailable
|
62 |
+
|
63 |
+
def convert_gender(value: str) -> int:
|
64 |
+
return None # Not used since gender data unavailable
|
65 |
+
|
66 |
+
# 3. Save Metadata
|
67 |
+
is_trait_available = trait_row is not None
|
68 |
+
validate_and_save_cohort_info(is_final=False,
|
69 |
+
cohort=cohort,
|
70 |
+
info_path=json_path,
|
71 |
+
is_gene_available=is_gene_available,
|
72 |
+
is_trait_available=is_trait_available)
|
73 |
+
|
74 |
+
# 4. Clinical Feature Extraction
|
75 |
+
if trait_row is not None:
|
76 |
+
clinical_features = geo_select_clinical_features(
|
77 |
+
clinical_df=clinical_data,
|
78 |
+
trait=trait,
|
79 |
+
trait_row=trait_row,
|
80 |
+
convert_trait=convert_trait,
|
81 |
+
age_row=age_row,
|
82 |
+
convert_age=convert_age,
|
83 |
+
gender_row=gender_row,
|
84 |
+
convert_gender=convert_gender
|
85 |
+
)
|
86 |
+
|
87 |
+
# Preview the processed clinical features
|
88 |
+
print("Preview of clinical features:")
|
89 |
+
print(preview_df(clinical_features))
|
90 |
+
|
91 |
+
# Save to CSV
|
92 |
+
clinical_features.to_csv(out_clinical_data_file)
|
93 |
+
# Extract gene expression data
|
94 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
95 |
+
|
96 |
+
# Print first 20 probe IDs
|
97 |
+
print("First 20 probe IDs:")
|
98 |
+
print(genetic_data.index[:20])
|
99 |
+
# Based on the probe IDs shown (e.g., '1007_s_at', '1053_at'), these are Affymetrix probe IDs
|
100 |
+
# and not human gene symbols. They need to be mapped to standard gene symbols for analysis.
|
101 |
+
requires_gene_mapping = True
|
102 |
+
# Extract gene annotation from SOFT file
|
103 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
104 |
+
|
105 |
+
# Preview column names and first few values
|
106 |
+
preview_dict = preview_df(gene_annotation)
|
107 |
+
print("Column names and preview values:")
|
108 |
+
for col, values in preview_dict.items():
|
109 |
+
print(f"\n{col}:")
|
110 |
+
print(values)
|
111 |
+
# The gene identifiers are in the 'ID' column of gene annotation data, which matches
|
112 |
+
# the probe IDs in gene expression data. Gene symbols are in the 'Gene Symbol' column.
|
113 |
+
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
114 |
+
|
115 |
+
# Apply the gene mapping to convert probe-level data to gene expression data
|
116 |
+
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
|
117 |
+
|
118 |
+
# Preview the first few rows and columns of the gene data
|
119 |
+
print("\nPreview of gene expression data:")
|
120 |
+
print(preview_df(gene_data))
|
121 |
+
# 1. Normalize gene symbols and save normalized gene data
|
122 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
123 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
124 |
+
|
125 |
+
# 2. Link clinical and genetic data
|
126 |
+
linked_data = geo_link_clinical_genetic_data(clinical_data, normalized_gene_data)
|
127 |
+
|
128 |
+
# 3. Handle missing values systematically
|
129 |
+
linked_data = handle_missing_values(linked_data, trait)
|
130 |
+
|
131 |
+
# 4. Detect bias in trait and demographic features, remove biased demographic features
|
132 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
133 |
+
|
134 |
+
# 5. Validate data quality and save cohort info
|
135 |
+
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
|
136 |
+
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
|
137 |
+
is_usable = validate_and_save_cohort_info(
|
138 |
+
is_final=True,
|
139 |
+
cohort=cohort,
|
140 |
+
info_path=json_path,
|
141 |
+
is_gene_available=True,
|
142 |
+
is_trait_available=True,
|
143 |
+
is_biased=is_biased,
|
144 |
+
df=linked_data,
|
145 |
+
note=note
|
146 |
+
)
|
147 |
+
|
148 |
+
# 6. Save linked data if usable
|
149 |
+
if is_usable:
|
150 |
+
linked_data.to_csv(out_data_file)
|
151 |
+
else:
|
152 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/GSE156915.py
ADDED
@@ -0,0 +1,144 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE156915"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE156915"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE156915.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE156915.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE156915.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# From the background info, we can see this is a gene expression study investigating
|
42 |
+
# DNA damage immune response in colorectal cancer
|
43 |
+
is_gene_available = True
|
44 |
+
|
45 |
+
# 2.1 Data Availability
|
46 |
+
# Looking at the sample characteristics:
|
47 |
+
# - Row 0 shows DDIR status which indicates DNA damage response status
|
48 |
+
trait_row = 0
|
49 |
+
# Age and gender info not available in sample characteristics
|
50 |
+
age_row = None
|
51 |
+
gender_row = None
|
52 |
+
|
53 |
+
# 2.2 Data Type Conversion Functions
|
54 |
+
def convert_trait(x):
|
55 |
+
if pd.isna(x):
|
56 |
+
return None
|
57 |
+
# Extract value after colon and strip whitespace
|
58 |
+
val = x.split(':')[1].strip()
|
59 |
+
# DDIR NEG = control = 0, DDIR POS = case = 1
|
60 |
+
if 'NEG' in val:
|
61 |
+
return 0
|
62 |
+
elif 'POS' in val:
|
63 |
+
return 1
|
64 |
+
return None
|
65 |
+
|
66 |
+
def convert_age(x):
|
67 |
+
# Not available
|
68 |
+
return None
|
69 |
+
|
70 |
+
def convert_gender(x):
|
71 |
+
# Not available
|
72 |
+
return None
|
73 |
+
|
74 |
+
# 3. Save Initial Metadata
|
75 |
+
is_trait_available = trait_row is not None
|
76 |
+
_ = validate_and_save_cohort_info(is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=is_trait_available)
|
81 |
+
|
82 |
+
# 4. Extract Clinical Features
|
83 |
+
if trait_row is not None:
|
84 |
+
clinical_df = geo_select_clinical_features(clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender)
|
92 |
+
|
93 |
+
# Preview the extracted features
|
94 |
+
preview = preview_df(clinical_df)
|
95 |
+
print("Preview of clinical features:")
|
96 |
+
print(preview)
|
97 |
+
|
98 |
+
# Save to CSV
|
99 |
+
clinical_df.to_csv(out_clinical_data_file)
|
100 |
+
# Extract gene expression data
|
101 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
102 |
+
|
103 |
+
# Print first 20 probe IDs
|
104 |
+
print("First 20 probe IDs:")
|
105 |
+
print(genetic_data.index[:20])
|
106 |
+
# These appear to be human gene symbols, with some RNA genes and pseudogenes
|
107 |
+
# The identifiers match official HGNC gene symbols and nomenclature patterns
|
108 |
+
requires_gene_mapping = False
|
109 |
+
# 1. Normalize gene symbols and save normalized gene data
|
110 |
+
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
|
111 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
112 |
+
|
113 |
+
# Read the processed clinical and gene data files
|
114 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
115 |
+
gene_data = pd.read_csv(out_gene_data_file, index_col=0)
|
116 |
+
|
117 |
+
# Link clinical and genetic data
|
118 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
119 |
+
|
120 |
+
# Handle missing values systematically
|
121 |
+
linked_data = handle_missing_values(linked_data, trait)
|
122 |
+
|
123 |
+
# Detect bias in trait and demographic features, remove biased demographic features
|
124 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
125 |
+
|
126 |
+
# Validate data quality and save cohort info
|
127 |
+
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
|
128 |
+
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
|
129 |
+
is_usable = validate_and_save_cohort_info(
|
130 |
+
is_final=True,
|
131 |
+
cohort=cohort,
|
132 |
+
info_path=json_path,
|
133 |
+
is_gene_available=True,
|
134 |
+
is_trait_available=True,
|
135 |
+
is_biased=is_biased,
|
136 |
+
df=linked_data,
|
137 |
+
note=note
|
138 |
+
)
|
139 |
+
|
140 |
+
# Save linked data if usable
|
141 |
+
if is_usable:
|
142 |
+
linked_data.to_csv(out_data_file)
|
143 |
+
else:
|
144 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/GSE218109.py
ADDED
@@ -0,0 +1,187 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE218109"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE218109"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE218109.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE218109.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE218109.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data
|
41 |
+
is_gene_available = True # Based on Series_title and Series_summary, this contains transcriptional profiling data
|
42 |
+
|
43 |
+
# 2.1 Data Availability
|
44 |
+
trait_row = 5 # p53 status indicates cancer condition
|
45 |
+
age_row = 1 # Age data available
|
46 |
+
gender_row = 0 # Sex data available
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(value):
|
50 |
+
if pd.isna(value):
|
51 |
+
return None
|
52 |
+
value = value.split(': ')[-1].lower()
|
53 |
+
if 'ns+' in value or 'nuclear-stabilized' in value:
|
54 |
+
return 1
|
55 |
+
elif 'ns-' in value or 'unstable' in value:
|
56 |
+
return 0
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_age(value):
|
60 |
+
if pd.isna(value):
|
61 |
+
return None
|
62 |
+
try:
|
63 |
+
return float(value.split(': ')[1])
|
64 |
+
except:
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_gender(value):
|
68 |
+
if pd.isna(value):
|
69 |
+
return None
|
70 |
+
value = value.split(': ')[1].upper()
|
71 |
+
if value == 'F':
|
72 |
+
return 0
|
73 |
+
elif value == 'M':
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save Initial Metadata
|
78 |
+
validate_and_save_cohort_info(
|
79 |
+
is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=(trait_row is not None)
|
84 |
+
)
|
85 |
+
|
86 |
+
# 4. Extract Clinical Features
|
87 |
+
selected_clinical = geo_select_clinical_features(
|
88 |
+
clinical_df=clinical_data,
|
89 |
+
trait=trait,
|
90 |
+
trait_row=trait_row,
|
91 |
+
convert_trait=convert_trait,
|
92 |
+
age_row=age_row,
|
93 |
+
convert_age=convert_age,
|
94 |
+
gender_row=gender_row,
|
95 |
+
convert_gender=convert_gender
|
96 |
+
)
|
97 |
+
|
98 |
+
# Preview the extracted features
|
99 |
+
print(preview_df(selected_clinical))
|
100 |
+
|
101 |
+
# Save clinical data
|
102 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
103 |
+
# Extract gene expression data
|
104 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
105 |
+
|
106 |
+
# Print first 20 probe IDs
|
107 |
+
print("First 20 probe IDs:")
|
108 |
+
print(genetic_data.index[:20])
|
109 |
+
# These probes appear to be numerical identifiers rather than standard human gene symbols
|
110 |
+
# Human gene symbols typically follow a specific format (e.g., BRCA1, TP53, IL6)
|
111 |
+
# Therefore gene mapping will be required
|
112 |
+
requires_gene_mapping = True
|
113 |
+
# Since the SOFT file doesn't contain usable annotation data, load platform annotation from external source
|
114 |
+
annotation_file = "./metadata/GPL4133.tsv"
|
115 |
+
|
116 |
+
# Load and preview the platform annotation
|
117 |
+
gene_annotation = pd.read_csv(annotation_file, sep='\t', comment='#')
|
118 |
+
|
119 |
+
# Show column names and preview the data
|
120 |
+
print("Platform Annotation Preview:")
|
121 |
+
print("-" * 50)
|
122 |
+
print(f"Number of rows: {len(gene_annotation)}")
|
123 |
+
print(f"\nColumns:")
|
124 |
+
for col in gene_annotation.columns:
|
125 |
+
print(col)
|
126 |
+
print("\nFirst few rows:")
|
127 |
+
print(preview_df(gene_annotation))
|
128 |
+
# Extract gene annotation from SOFT file
|
129 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
130 |
+
|
131 |
+
# Preview the data
|
132 |
+
print("Gene Annotation Preview:")
|
133 |
+
print("-" * 50)
|
134 |
+
print(f"Number of rows: {len(gene_annotation)}")
|
135 |
+
print(f"\nColumns:")
|
136 |
+
for col in gene_annotation.columns:
|
137 |
+
print(col)
|
138 |
+
print("\nFirst few rows:")
|
139 |
+
print(preview_df(gene_annotation))
|
140 |
+
# 1. The 'ID' column in gene annotation matches the gene expression data indices
|
141 |
+
# The 'GENE_SYMBOL' column contains the gene symbols we want to map to
|
142 |
+
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
|
143 |
+
|
144 |
+
# 2. Apply gene mapping to convert probe-level data to gene-level data
|
145 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
146 |
+
|
147 |
+
# Preview results
|
148 |
+
print("Gene Expression Data Preview:")
|
149 |
+
print("-" * 50)
|
150 |
+
print(f"Number of genes: {len(gene_data)}")
|
151 |
+
print("\nFirst few rows:")
|
152 |
+
print(preview_df(gene_data))
|
153 |
+
# 1. Normalize gene symbols and save
|
154 |
+
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
|
155 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
156 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
157 |
+
|
158 |
+
# 2. Link clinical and genetic data
|
159 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
160 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
|
161 |
+
|
162 |
+
# 3. Handle missing values systematically
|
163 |
+
linked_data = handle_missing_values(linked_data, trait)
|
164 |
+
|
165 |
+
# 4. Detect bias in trait and demographic features
|
166 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
167 |
+
|
168 |
+
# 5. Validate data quality and save cohort info
|
169 |
+
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma tumors, "
|
170 |
+
"comparing nuclear-stabilized p53 (NS+) versus unstable p53 (NS-) protein tumor samples.")
|
171 |
+
is_usable = validate_and_save_cohort_info(
|
172 |
+
is_final=True,
|
173 |
+
cohort=cohort,
|
174 |
+
info_path=json_path,
|
175 |
+
is_gene_available=True,
|
176 |
+
is_trait_available=True,
|
177 |
+
is_biased=is_biased,
|
178 |
+
df=linked_data,
|
179 |
+
note=note
|
180 |
+
)
|
181 |
+
|
182 |
+
# 6. Save linked data if usable
|
183 |
+
if is_usable:
|
184 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
185 |
+
linked_data.to_csv(out_data_file)
|
186 |
+
else:
|
187 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/GSE55857.py
ADDED
@@ -0,0 +1,99 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE55857"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE55857"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE55857.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE55857.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE55857.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# This is a microRNA dataset (SuperSeries) studying small non-coding RNAs
|
42 |
+
# MicroRNA data is not suitable for our gene expression analysis
|
43 |
+
is_gene_available = False
|
44 |
+
|
45 |
+
# 2. Clinical Data Variables Analysis
|
46 |
+
# 2.1 Data Availability
|
47 |
+
# Trait (cancer status) is available in row 1 as "tissue" field
|
48 |
+
# Age and gender are not recorded
|
49 |
+
trait_row = 1
|
50 |
+
age_row = None
|
51 |
+
gender_row = None
|
52 |
+
|
53 |
+
# 2.2 Data Type Conversion Functions
|
54 |
+
def convert_trait(value):
|
55 |
+
"""Convert tissue type to binary cancer status"""
|
56 |
+
if not isinstance(value, str):
|
57 |
+
return None
|
58 |
+
value = value.split(": ")[-1].lower().strip()
|
59 |
+
if "tumor" in value:
|
60 |
+
return 1
|
61 |
+
elif "normal" in value:
|
62 |
+
return 0
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(value):
|
66 |
+
"""Convert age value - not used"""
|
67 |
+
return None
|
68 |
+
|
69 |
+
def convert_gender(value):
|
70 |
+
"""Convert gender value - not used"""
|
71 |
+
return None
|
72 |
+
|
73 |
+
# 3. Save Metadata
|
74 |
+
# trait_row is not None, so trait data is available
|
75 |
+
is_trait_available = trait_row is not None
|
76 |
+
validate_and_save_cohort_info(is_final=False,
|
77 |
+
cohort=cohort,
|
78 |
+
info_path=json_path,
|
79 |
+
is_gene_available=is_gene_available,
|
80 |
+
is_trait_available=is_trait_available)
|
81 |
+
|
82 |
+
# 4. Extract Clinical Features
|
83 |
+
# Since trait_row is not None, we extract clinical features
|
84 |
+
clinical_features = geo_select_clinical_features(clinical_data,
|
85 |
+
trait=trait,
|
86 |
+
trait_row=trait_row,
|
87 |
+
convert_trait=convert_trait,
|
88 |
+
age_row=age_row,
|
89 |
+
convert_age=convert_age,
|
90 |
+
gender_row=gender_row,
|
91 |
+
convert_gender=convert_gender)
|
92 |
+
|
93 |
+
# Preview the extracted features
|
94 |
+
preview_results = preview_df(clinical_features)
|
95 |
+
print("Preview of clinical features:")
|
96 |
+
print(preview_results)
|
97 |
+
|
98 |
+
# Save clinical features
|
99 |
+
clinical_features.to_csv(out_clinical_data_file)
|
p3/preprocess/Esophageal_Cancer/code/GSE66258.py
ADDED
@@ -0,0 +1,90 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE66258"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE66258"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE66258.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE66258.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE66258.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# Based on the series description, this is a microRNA dataset, not suitable for gene expression analysis
|
42 |
+
is_gene_available = False
|
43 |
+
|
44 |
+
# 2.1 Data Availability
|
45 |
+
# From sample characteristics:
|
46 |
+
# - trait: Row 0 shows all samples are ESCC tumor tissue
|
47 |
+
# - age: Not available
|
48 |
+
# - gender: Not available
|
49 |
+
trait_row = 0
|
50 |
+
age_row = None
|
51 |
+
gender_row = None
|
52 |
+
|
53 |
+
# 2.2 Data Type Conversion Functions
|
54 |
+
def convert_trait(value: str) -> int:
|
55 |
+
"""Convert ESCC tumor status to binary"""
|
56 |
+
if 'esophageal squamous cell carcinoma' in value.lower():
|
57 |
+
return 1
|
58 |
+
return None
|
59 |
+
|
60 |
+
def convert_age(value: str) -> float:
|
61 |
+
"""Convert age to float"""
|
62 |
+
return None # Not used since age data not available
|
63 |
+
|
64 |
+
def convert_gender(value: str) -> int:
|
65 |
+
"""Convert gender to binary"""
|
66 |
+
return None # Not used since gender data not available
|
67 |
+
|
68 |
+
# 3. Save metadata
|
69 |
+
validate_and_save_cohort_info(
|
70 |
+
is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=trait_row is not None
|
75 |
+
)
|
76 |
+
|
77 |
+
# 4. Extract clinical features since trait_row is not None
|
78 |
+
selected_clinical = geo_select_clinical_features(
|
79 |
+
clinical_df=clinical_data,
|
80 |
+
trait=trait,
|
81 |
+
trait_row=trait_row,
|
82 |
+
convert_trait=convert_trait
|
83 |
+
)
|
84 |
+
|
85 |
+
# Preview and save
|
86 |
+
print("Clinical data preview:")
|
87 |
+
print(preview_df(selected_clinical))
|
88 |
+
|
89 |
+
# Save clinical data
|
90 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
p3/preprocess/Esophageal_Cancer/code/GSE75241.py
ADDED
@@ -0,0 +1,160 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE75241"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE75241"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE75241.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE75241.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE75241.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# From title and summary, this is a gene expression profile dataset
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2.1 Data Availability
|
45 |
+
# trait (cancer status) is in row 1 (tissue type)
|
46 |
+
trait_row = 1
|
47 |
+
|
48 |
+
# age and gender not available in characteristics
|
49 |
+
age_row = None
|
50 |
+
gender_row = None
|
51 |
+
|
52 |
+
# 2.2 Data Type Conversion Functions
|
53 |
+
def convert_trait(value):
|
54 |
+
if pd.isna(value):
|
55 |
+
return None
|
56 |
+
# Extract value after colon and strip whitespace
|
57 |
+
value = value.split(':')[1].strip()
|
58 |
+
# Convert to binary: nonmalignant (0) vs tumor (1)
|
59 |
+
if 'nonmalignant' in value.lower():
|
60 |
+
return 0
|
61 |
+
elif 'tumor' in value.lower():
|
62 |
+
return 1
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_age(value):
|
66 |
+
return None # Not used since age data not available
|
67 |
+
|
68 |
+
def convert_gender(value):
|
69 |
+
return None # Not used since gender data not available
|
70 |
+
|
71 |
+
# 3. Save Metadata
|
72 |
+
validate_and_save_cohort_info(
|
73 |
+
is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=(trait_row is not None)
|
78 |
+
)
|
79 |
+
|
80 |
+
# 4. Clinical Feature Extraction
|
81 |
+
# Since trait_row is not None, we extract features
|
82 |
+
selected_clinical = geo_select_clinical_features(
|
83 |
+
clinical_df=clinical_data,
|
84 |
+
trait=trait,
|
85 |
+
trait_row=trait_row,
|
86 |
+
convert_trait=convert_trait,
|
87 |
+
age_row=age_row,
|
88 |
+
convert_age=convert_age,
|
89 |
+
gender_row=gender_row,
|
90 |
+
convert_gender=convert_gender
|
91 |
+
)
|
92 |
+
|
93 |
+
# Preview the extracted features
|
94 |
+
preview_result = preview_df(selected_clinical)
|
95 |
+
|
96 |
+
# Save clinical data
|
97 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
98 |
+
# Extract gene expression data
|
99 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
100 |
+
|
101 |
+
# Print first 20 probe IDs
|
102 |
+
print("First 20 probe IDs:")
|
103 |
+
print(genetic_data.index[:20])
|
104 |
+
# These probes appear to be numerical IDs from Illumina platform
|
105 |
+
# rather than standardized gene symbols like "BRCA1", "TP53" etc.
|
106 |
+
# Therefore mapping to gene symbols will be required
|
107 |
+
requires_gene_mapping = True
|
108 |
+
# Extract gene annotation from SOFT file
|
109 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
110 |
+
|
111 |
+
# Preview column names and first few values
|
112 |
+
preview_dict = preview_df(gene_annotation)
|
113 |
+
print("Column names and preview values:")
|
114 |
+
for col, values in preview_dict.items():
|
115 |
+
print(f"\n{col}:")
|
116 |
+
print(values)
|
117 |
+
# 'ID' in gene_annotation matches the probe IDs in genetic_data
|
118 |
+
# 'gene_assignment' contains gene symbol information
|
119 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
|
120 |
+
|
121 |
+
# Apply gene mapping to get gene expression data
|
122 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
123 |
+
|
124 |
+
# Save gene data
|
125 |
+
gene_data.to_csv(out_gene_data_file)
|
126 |
+
|
127 |
+
# Preview the gene data
|
128 |
+
preview_result = preview_df(gene_data)
|
129 |
+
# Read the processed clinical and gene data files
|
130 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
131 |
+
gene_data = pd.read_csv(out_gene_data_file, index_col=0) # Already normalized in step 6
|
132 |
+
|
133 |
+
# Link clinical and genetic data
|
134 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
135 |
+
|
136 |
+
# Handle missing values systematically
|
137 |
+
linked_data = handle_missing_values(linked_data, trait)
|
138 |
+
|
139 |
+
# Detect bias in trait and demographic features, remove biased demographic features
|
140 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
141 |
+
|
142 |
+
# Validate data quality and save cohort info
|
143 |
+
note = ("This dataset studies gene expression profiles in esophageal squamous cell carcinoma, "
|
144 |
+
"comparing tumor samples with matched nonmalignant mucosa. The sample size is moderate with paired samples.")
|
145 |
+
is_usable = validate_and_save_cohort_info(
|
146 |
+
is_final=True,
|
147 |
+
cohort=cohort,
|
148 |
+
info_path=json_path,
|
149 |
+
is_gene_available=True,
|
150 |
+
is_trait_available=True,
|
151 |
+
is_biased=is_biased,
|
152 |
+
df=linked_data,
|
153 |
+
note=note
|
154 |
+
)
|
155 |
+
|
156 |
+
# Save linked data if usable
|
157 |
+
if is_usable:
|
158 |
+
linked_data.to_csv(out_data_file)
|
159 |
+
else:
|
160 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/GSE77790.py
ADDED
@@ -0,0 +1,227 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
cohort = "GSE77790"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Esophageal_Cancer"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Esophageal_Cancer/GSE77790"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/GSE77790.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/GSE77790.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/GSE77790.csv"
|
16 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# Get gene expression data from matrix file
|
41 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
42 |
+
|
43 |
+
# Create trait column from cell line information
|
44 |
+
cell_lines = clinical_data.iloc[0]
|
45 |
+
clinical_df = pd.DataFrame(index=cell_lines.index)
|
46 |
+
clinical_df[trait] = cell_lines.str.contains('TE8|TE9').astype(int)
|
47 |
+
|
48 |
+
# Normalize gene symbols and save to file
|
49 |
+
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
|
50 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
51 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
52 |
+
|
53 |
+
# Save clinical data to file
|
54 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
55 |
+
clinical_df.to_csv(out_clinical_data_file)
|
56 |
+
|
57 |
+
# Link clinical and genetic data
|
58 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
|
59 |
+
|
60 |
+
# Handle missing values systematically
|
61 |
+
linked_data = handle_missing_values(linked_data, trait)
|
62 |
+
|
63 |
+
# Detect bias in trait and demographic features, remove biased demographic features
|
64 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
65 |
+
|
66 |
+
# Validate data quality and save cohort info
|
67 |
+
note = ("This dataset studies gene expression changes in cancer cell lines after miRNA/siRNA treatments. "
|
68 |
+
"Data quality evaluation indicates the trait distribution is biased.")
|
69 |
+
is_usable = validate_and_save_cohort_info(
|
70 |
+
is_final=True,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=True,
|
74 |
+
is_trait_available=True,
|
75 |
+
is_biased=is_biased,
|
76 |
+
df=linked_data,
|
77 |
+
note=note
|
78 |
+
)
|
79 |
+
|
80 |
+
# Save linked data if usable
|
81 |
+
if is_usable:
|
82 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
83 |
+
linked_data.to_csv(out_data_file)
|
84 |
+
else:
|
85 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
86 |
+
# Set initial availability flags
|
87 |
+
is_gene_available = False # Cannot determine without data
|
88 |
+
|
89 |
+
# No data available yet
|
90 |
+
trait_row = None
|
91 |
+
age_row = None
|
92 |
+
gender_row = None
|
93 |
+
|
94 |
+
def convert_trait(x):
|
95 |
+
return None
|
96 |
+
|
97 |
+
def convert_age(x):
|
98 |
+
return None
|
99 |
+
|
100 |
+
def convert_gender(x):
|
101 |
+
return None
|
102 |
+
|
103 |
+
# Save initial metadata
|
104 |
+
validate_and_save_cohort_info(
|
105 |
+
is_final=False,
|
106 |
+
cohort=cohort,
|
107 |
+
info_path=json_path,
|
108 |
+
is_gene_available=is_gene_available,
|
109 |
+
is_trait_available=False # Since trait_row is None
|
110 |
+
)
|
111 |
+
# Check gene expression data availability (GPL570 platform indicates gene expression data)
|
112 |
+
is_gene_available = True
|
113 |
+
|
114 |
+
# Data availability from sample characteristics
|
115 |
+
trait_row = 2 # "source name: esophageal tumor or paired normal"
|
116 |
+
age_row = 9 # "age (years): [numeric values]"
|
117 |
+
gender_row = 8 # "sex: male/female"
|
118 |
+
|
119 |
+
def convert_trait(val: str) -> Optional[int]:
|
120 |
+
if val is None:
|
121 |
+
return None
|
122 |
+
val = val.split(":")[-1].strip().lower()
|
123 |
+
if "tumor" in val:
|
124 |
+
return 1
|
125 |
+
elif "normal" in val:
|
126 |
+
return 0
|
127 |
+
return None
|
128 |
+
|
129 |
+
def convert_age(val: str) -> Optional[float]:
|
130 |
+
if val is None:
|
131 |
+
return None
|
132 |
+
val = val.split(":")[-1].strip()
|
133 |
+
try:
|
134 |
+
return float(val)
|
135 |
+
except:
|
136 |
+
return None
|
137 |
+
|
138 |
+
def convert_gender(val: str) -> Optional[int]:
|
139 |
+
if val is None:
|
140 |
+
return None
|
141 |
+
val = val.split(":")[-1].strip().lower()
|
142 |
+
if "female" in val:
|
143 |
+
return 0
|
144 |
+
elif "male" in val:
|
145 |
+
return 1
|
146 |
+
return None
|
147 |
+
|
148 |
+
# Save metadata for initial filtering
|
149 |
+
_ = validate_and_save_cohort_info(is_final=False,
|
150 |
+
cohort=cohort,
|
151 |
+
info_path=json_path,
|
152 |
+
is_gene_available=is_gene_available,
|
153 |
+
is_trait_available=(trait_row is not None))
|
154 |
+
# Extract gene expression data
|
155 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
156 |
+
genetic_data.index = genetic_data.index.astype(str) # Convert probe IDs to strings
|
157 |
+
|
158 |
+
# Print first 20 probe IDs
|
159 |
+
print("First 20 probe IDs:")
|
160 |
+
print(genetic_data.index[:20])
|
161 |
+
# The indices appear to be just sequential numbers rather than any meaningful gene identifiers
|
162 |
+
# This indicates the gene identifiers need to be mapped to proper gene symbols
|
163 |
+
requires_gene_mapping = True
|
164 |
+
# Extract gene annotation from SOFT file
|
165 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
166 |
+
|
167 |
+
# Preview column names and first few values
|
168 |
+
preview_dict = preview_df(gene_annotation)
|
169 |
+
print("Column names and preview values:")
|
170 |
+
for col, values in preview_dict.items():
|
171 |
+
print(f"\n{col}:")
|
172 |
+
print(values)
|
173 |
+
# Extract probe-gene mapping columns
|
174 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'GENE_SYMBOL')
|
175 |
+
|
176 |
+
# Apply gene mapping to convert probe data to gene expression data
|
177 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
178 |
+
# Define clinical data parameters based on sample characteristics
|
179 |
+
trait_row = 1 # cell type row
|
180 |
+
def convert_trait(x):
|
181 |
+
if not isinstance(x, str):
|
182 |
+
return None
|
183 |
+
x = x.lower()
|
184 |
+
return 1 if 'esophageal cancer' in x else 0
|
185 |
+
|
186 |
+
# Extract clinical features
|
187 |
+
clinical_df = geo_select_clinical_features(
|
188 |
+
clinical_data,
|
189 |
+
trait=trait,
|
190 |
+
trait_row=trait_row,
|
191 |
+
convert_trait=convert_trait
|
192 |
+
)
|
193 |
+
|
194 |
+
# Normalize gene symbols
|
195 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
196 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
197 |
+
gene_data.to_csv(out_gene_data_file)
|
198 |
+
|
199 |
+
# Link clinical and genetic data
|
200 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
201 |
+
|
202 |
+
# Handle missing values systematically
|
203 |
+
linked_data = handle_missing_values(linked_data, trait)
|
204 |
+
|
205 |
+
# Detect bias in trait and demographic features, remove biased demographic features
|
206 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
207 |
+
|
208 |
+
# Validate data quality and save cohort info
|
209 |
+
note = ("This dataset studies gene expression in esophageal cancer cell lines. "
|
210 |
+
"Data quality evaluation indicates potential trait distribution bias.")
|
211 |
+
is_usable = validate_and_save_cohort_info(
|
212 |
+
is_final=True,
|
213 |
+
cohort=cohort,
|
214 |
+
info_path=json_path,
|
215 |
+
is_gene_available=True,
|
216 |
+
is_trait_available=True,
|
217 |
+
is_biased=is_biased,
|
218 |
+
df=linked_data,
|
219 |
+
note=note
|
220 |
+
)
|
221 |
+
|
222 |
+
# Save linked data if usable
|
223 |
+
if is_usable:
|
224 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
225 |
+
linked_data.to_csv(out_data_file)
|
226 |
+
else:
|
227 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Esophageal_Cancer/code/TCGA.py
ADDED
@@ -0,0 +1,115 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Esophageal_Cancer"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Esophageal_Cancer/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Esophageal_Cancer/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Esophageal_Cancer/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Esophageal_Cancer/cohort_info.json"
|
15 |
+
|
16 |
+
# Select the ESCA (Esophageal Cancer) cohort directory
|
17 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Esophageal_Cancer_(ESCA)')
|
18 |
+
|
19 |
+
# Get paths for clinical and genetic data files
|
20 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
|
21 |
+
|
22 |
+
# Load the data files
|
23 |
+
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
|
24 |
+
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')
|
25 |
+
|
26 |
+
# Print clinical data columns for review
|
27 |
+
print("Clinical data columns:")
|
28 |
+
print(clinical_df.columns.tolist())
|
29 |
+
# 1. Identify candidate columns for age and gender
|
30 |
+
candidate_age_cols = ['age_at_initial_pathologic_diagnosis', 'age_began_smoking_in_years', 'days_to_birth']
|
31 |
+
candidate_gender_cols = ['gender']
|
32 |
+
|
33 |
+
# 2. Preview the data
|
34 |
+
# First check available directories
|
35 |
+
print("Available directories in TCGA root:")
|
36 |
+
print(os.listdir(tcga_root_dir))
|
37 |
+
|
38 |
+
# Get clinical data path using actual directory structure
|
39 |
+
cohort_dir = os.path.join(tcga_root_dir, "TCGA-ESCA")
|
40 |
+
clinical_file_path, _ = tcga_get_relevant_filepaths(cohort_dir)
|
41 |
+
|
42 |
+
# Read clinical data
|
43 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0)
|
44 |
+
|
45 |
+
# Extract candidate columns
|
46 |
+
age_data = clinical_df[candidate_age_cols]
|
47 |
+
gender_data = clinical_df[candidate_gender_cols]
|
48 |
+
|
49 |
+
# Preview data as dictionaries
|
50 |
+
print("\nAge columns preview:")
|
51 |
+
print(preview_df(age_data))
|
52 |
+
print("\nGender columns preview:")
|
53 |
+
print(preview_df(gender_data))
|
54 |
+
# Select the ESCA (Esophageal Cancer) cohort directory
|
55 |
+
cohort_dir = os.path.join(tcga_root_dir, 'TCGA_Esophageal_Cancer_(ESCA)')
|
56 |
+
|
57 |
+
# Get paths for clinical and genetic data files
|
58 |
+
clinical_file, genetic_file = tcga_get_relevant_filepaths(cohort_dir)
|
59 |
+
|
60 |
+
# Load the data files
|
61 |
+
clinical_df = pd.read_csv(clinical_file, index_col=0, sep='\t')
|
62 |
+
genetic_df = pd.read_csv(genetic_file, index_col=0, sep='\t')
|
63 |
+
|
64 |
+
# Print clinical data columns for review
|
65 |
+
print("Clinical data columns:")
|
66 |
+
print(clinical_df.columns.tolist())
|
67 |
+
# Check values in candidate columns
|
68 |
+
age_col = "age_at_initial_pathologic_diagnosis"
|
69 |
+
|
70 |
+
# Gender column is straightforward
|
71 |
+
gender_col = "gender"
|
72 |
+
|
73 |
+
# Print chosen columns
|
74 |
+
print(f"Selected age column: {age_col}")
|
75 |
+
print(f"Selected gender column: {gender_col}")
|
76 |
+
# Carry over the selected demographic columns
|
77 |
+
age_col = "age_at_initial_pathologic_diagnosis"
|
78 |
+
gender_col = "gender"
|
79 |
+
|
80 |
+
# 1. Extract and standardize clinical features
|
81 |
+
clinical_df = tcga_select_clinical_features(clinical_df, trait, age_col, gender_col)
|
82 |
+
|
83 |
+
# 2. Normalize gene expression data
|
84 |
+
normalized_genetic_df = normalize_gene_symbols_in_index(genetic_df)
|
85 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
86 |
+
normalized_genetic_df.to_csv(out_gene_data_file)
|
87 |
+
|
88 |
+
# 3. Link clinical and genetic data
|
89 |
+
linked_data = pd.merge(normalized_genetic_df.T, clinical_df, left_index=True, right_index=True)
|
90 |
+
|
91 |
+
# Add trait labels based on sample IDs
|
92 |
+
linked_data[trait] = linked_data.index.map(tcga_convert_trait)
|
93 |
+
|
94 |
+
# 4. Handle missing values
|
95 |
+
linked_data = handle_missing_values(linked_data, trait)
|
96 |
+
|
97 |
+
# 5. Check for bias in features
|
98 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
99 |
+
|
100 |
+
# 6. Validate and save cohort info
|
101 |
+
is_usable = validate_and_save_cohort_info(
|
102 |
+
is_final=True,
|
103 |
+
cohort="TCGA_Esophageal_Cancer_(ESCA)",
|
104 |
+
info_path=json_path,
|
105 |
+
is_gene_available=len(normalized_genetic_df.columns) > 0,
|
106 |
+
is_trait_available=trait in linked_data.columns,
|
107 |
+
is_biased=is_biased,
|
108 |
+
df=linked_data,
|
109 |
+
note="Data from TCGA Esophageal Cancer cohort"
|
110 |
+
)
|
111 |
+
|
112 |
+
# 7. Save linked data if usable
|
113 |
+
if is_usable:
|
114 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
115 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE100843.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6d9abb76c462b0a0290fb8bd1e665e3345055fcabe727f8ddb92919532d6b26c
|
3 |
+
size 28273352
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE104958.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f56a51be1a5c9d45191e0295166f9ecde7c87bb40d6bfaf0a93ca8f8c181233
|
3 |
+
size 11772704
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE107754.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a82da64a5edcbde2a3ccf1c07d005767e02ceeaad822b4ed6217419063405079
|
3 |
+
size 19822703
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE131027.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a8582008fe6fc5b90879aea7d12ca4ea58cc0bbe03209acb333425d229be6e33
|
3 |
+
size 24379939
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE218109.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM6734720,GSM6734721,GSM6734722,GSM6734723,GSM6734724,GSM6734725,GSM6734726,GSM6734727,GSM6734728,GSM6734729,GSM6734730,GSM6734731,GSM6734732,GSM6734733,GSM6734734,GSM6734735,GSM6734736,GSM6734737,GSM6734738,GSM6734739,GSM6734740,GSM6734741,GSM6734742,GSM6734743,GSM6734744,GSM6734745,GSM6734746,GSM6734747,GSM6734748,GSM6734749,GSM6734750,GSM6734751,GSM6734752,GSM6734753,GSM6734754,GSM6734755
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE75241.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:671cc5a3e739a93eb07952d9d1c14095451645ae1a20145b7aa73ec9bd47e225
|
3 |
+
size 18737528
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE77790.csv
ADDED
@@ -0,0 +1 @@
|
|
|
|
|
1 |
+
ID,GSM2059404,GSM2059405,GSM2059406,GSM2059407,GSM2059408,GSM2059409,GSM2059410,GSM2059411,GSM2059412,GSM2059413,GSM2059414,GSM2059415,GSM2059416,GSM2059417,GSM2059418,GSM2059419,GSM2059420,GSM2059421,GSM2059422,GSM2059423,GSM2059424,GSM2059425,GSM2059426,GSM2059427,GSM2059428,GSM2059429,GSM2059430,GSM2059431,GSM2059432,GSM2059433,GSM2059434,GSM2059435
|
p3/preprocess/Esophageal_Cancer/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be8b1dd125bb45c3b527f42bfa3ddd3ac8a86d1f3a92868da89995845df4ef72
|
3 |
+
size 58741039
|
p3/preprocess/Essential_Thrombocythemia/GSE103237.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Essential_Thrombocythemia/GSE12295.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Essential_Thrombocythemia/GSE159514.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:cb319d1f2830f21ca6c9dadb7d1a99374a14894b518a863ed0aed19e1dd4a504
|
3 |
+
size 21786888
|
p3/preprocess/Essential_Thrombocythemia/GSE174060.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Essential_Thrombocythemia/GSE55976.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Essential_Thrombocythemia/GSE57793.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:788c0950aca6203d9bab29622515671322fe26e660d824dc4c12830fde911eee
|
3 |
+
size 17564694
|
p3/preprocess/Essential_Thrombocythemia/GSE61629.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE103176.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2758744,GSM2758745,GSM2758746,GSM2758747,GSM2758748,GSM2758749,GSM2758750,GSM2758751,GSM2758752,GSM2758753,GSM2758754,GSM2758755,GSM2758756,GSM2758757,GSM2758758,GSM2758759,GSM2758760,GSM2758761,GSM2758762,GSM2758763,GSM2758764,GSM2758765,GSM2758766,GSM2758767,GSM2758768,GSM2758769,GSM2758770,GSM2758771,GSM2758772,GSM2758773,GSM2758774,GSM2758775,GSM2758776,GSM2758777,GSM2758778,GSM2758779,GSM2758780,GSM2758781,GSM2758782,GSM2758783,GSM2758784,GSM2758785,GSM2758786,GSM2758787,GSM2758788,GSM2758789,GSM2758790,GSM2758791,GSM2758792,GSM2758793,GSM2758794,GSM2758795,GSM2758796,GSM2758797,GSM2758798,GSM2758799,GSM2758800,GSM2758801,GSM2758802,GSM2758803,GSM2758804,GSM2758805,GSM2758806,GSM2758807,GSM2758808
|
2 |
+
Essential_Thrombocythemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Gender,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,,,,,,,,,,,,,,,
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE103237.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
,GSM2758679,GSM2758680,GSM2758681,GSM2758682,GSM2758683,GSM2758684,GSM2758685,GSM2758686,GSM2758687,GSM2758688,GSM2758689,GSM2758690,GSM2758691,GSM2758692,GSM2758693,GSM2758694,GSM2758695,GSM2758696,GSM2758697,GSM2758698,GSM2758699,GSM2758700,GSM2758701,GSM2758702,GSM2758703,GSM2758704,GSM2758705,GSM2758706,GSM2758707,GSM2758708,GSM2758709,GSM2758710,GSM2758711,GSM2758712,GSM2758713,GSM2758714,GSM2758715,GSM2758716,GSM2758717,GSM2758718,GSM2758719,GSM2758720,GSM2758721,GSM2758722,GSM2758723,GSM2758724,GSM2758725,GSM2758726,GSM2758727,GSM2758728,GSM2758729,GSM2758730,GSM2758731,GSM2758732,GSM2758733,GSM2758734,GSM2758735,GSM2758736,GSM2758737,GSM2758738,GSM2758739,GSM2758740,GSM2758741,GSM2758742,GSM2758743
|
2 |
+
Essential_Thrombocythemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Gender,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,,,,,,,,,,,,,,,
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE12295.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM309072,GSM309073,GSM309074,GSM309075,GSM309076,GSM309077,GSM309078,GSM309079,GSM309080,GSM309081,GSM309082,GSM309083,GSM309084,GSM309085,GSM309086,GSM309087,GSM309088,GSM309089,GSM309090,GSM309091,GSM309092,GSM309093,GSM309094,GSM309095,GSM309096,GSM309097,GSM309098,GSM309099,GSM309100,GSM309101,GSM309102,GSM309103,GSM309104,GSM309105,GSM309106,GSM309107,GSM309108,GSM309109,GSM309110,GSM309111,GSM309112,GSM309113,GSM309114,GSM309115,GSM309116,GSM309117,GSM309118,GSM309119,GSM309120,GSM309121,GSM309122,GSM309123,GSM309124,GSM309125,GSM309126,GSM309127,GSM309128,GSM309129,GSM309130,GSM309131,GSM309132,GSM309133,GSM309134,GSM309135,GSM309136,GSM309137,GSM309138,GSM309139,GSM309140,GSM309141,GSM309142,GSM309143,GSM309144,GSM309145,GSM309146,GSM309147,GSM309148,GSM309149,GSM309150,GSM309151,GSM309152,GSM309153,GSM309154,GSM309155,GSM309156,GSM309157,GSM309158,GSM309159,GSM309160,GSM309161,GSM309162,GSM309163,GSM309164,GSM309165,GSM309166
|
2 |
+
Essential_Thrombocythemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,1.0,,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,,,,,,,1.0,1.0,,,,,,,,,,,,,,,,1.0
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE159514.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM4831515,GSM4831516,GSM4831517,GSM4831518,GSM4831519,GSM4831520,GSM4831521,GSM4831522,GSM4831523,GSM4831524,GSM4831525,GSM4831526,GSM4831527,GSM4831528,GSM4831529,GSM4831530,GSM4831531,GSM4831532,GSM4831533,GSM4831534,GSM4831535,GSM4831536,GSM4831537,GSM4831538,GSM4831539,GSM4831540,GSM4831541,GSM4831542,GSM4831543,GSM4831544,GSM4831545,GSM4831546,GSM4831547,GSM4831548,GSM4831549,GSM4831550,GSM4831551,GSM4831552,GSM4831553,GSM4831554,GSM4831555,GSM4831556,GSM4831557,GSM4831558,GSM4831559,GSM4831560,GSM4831561,GSM4831562,GSM4831563,GSM4831564,GSM4831565,GSM4831566,GSM4831567,GSM4831568,GSM4831569,GSM4831570,GSM4831571,GSM4831572,GSM4831573,GSM4831574,GSM4831575,GSM4831576,GSM4831577,GSM4831578,GSM4831579,GSM4831580,GSM4831581,GSM4831582,GSM4831583,GSM4831584,GSM4831585,GSM4831586,GSM4831587,GSM4831588,GSM4831589,GSM4831590,GSM4831591,GSM4831592,GSM4831593,GSM4831594,GSM4831595,GSM4831596,GSM4831597,GSM4831598,GSM4831599,GSM4831600,GSM4831601,GSM4831602,GSM4831603,GSM4831604,GSM4831605,GSM4831606,GSM4831607,GSM4831608,GSM4831609,GSM4831610,GSM4831611,GSM4831612,GSM4831613,GSM4831614,GSM4831615,GSM4831616,GSM4831617,GSM4831618,GSM4831619,GSM4831620,GSM4831621,GSM4831622,GSM4831623,GSM4831624,GSM4831625,GSM4831626,GSM4831627,GSM4831628
|
2 |
+
Essential_Thrombocythemia,0.0,1.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE174060.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM5285411,GSM5285412,GSM5285413,GSM5285414,GSM5285415,GSM5285416,GSM5285417,GSM5285418,GSM5285419,GSM5285420,GSM5285421,GSM5285422,GSM5285423,GSM5285424,GSM5285425,GSM5285426,GSM5285427,GSM5285428,GSM5285429,GSM5285430,GSM5285431,GSM5285432,GSM5285433,GSM5285434,GSM5285435,GSM5285436,GSM5285437,GSM5285438,GSM5285439,GSM5285440,GSM5285441,GSM5285442,GSM5285443,GSM5285444,GSM5285445,GSM5285446
|
2 |
+
Essential_Thrombocythemia,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0
|
3 |
+
Age,41.0,53.0,52.0,47.0,19.0,33.0,58.0,76.0,68.0,65.0,61.0,45.0,68.0,42.0,36.0,42.0,69.0,45.0,74.0,75.0,62.0,58.0,76.0,72.0,61.0,76.0,71.0,43.0,56.0,68.0,29.0,27.0,28.0,28.0,32.0,27.0
|
4 |
+
Gender,0.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE55976.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1349677,GSM1349678,GSM1349679,GSM1349680,GSM1349681,GSM1349682,GSM1349683,GSM1349684,GSM1349685,GSM1349686,GSM1349687,GSM1349688,GSM1349689,GSM1349690,GSM1349691,GSM1349692,GSM1349693,GSM1349694,GSM1349695,GSM1349696,GSM1349697,GSM1349698,GSM1349699,GSM1349700,GSM1349701,GSM1349702,GSM1349703,GSM1349704,GSM1349705,GSM1349706,GSM1349707,GSM1349708,GSM1349709,GSM1349710,GSM1349711,GSM1349712,GSM1349713,GSM1349714,GSM1349715
|
2 |
+
Essential_Thrombocythemia,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE57793.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1388566,GSM1388567,GSM1388568,GSM1388569,GSM1388570,GSM1388571,GSM1388572,GSM1388573,GSM1388574,GSM1388575,GSM1388576,GSM1388577,GSM1388578,GSM1388579,GSM1388580,GSM1388581,GSM1388582,GSM1388583,GSM1388584,GSM1388585,GSM1388586,GSM1388587,GSM1388588,GSM1388589,GSM1388590,GSM1388591,GSM1388592,GSM1388593,GSM1388594,GSM1388595,GSM1388596,GSM1388597,GSM1388598,GSM1388599,GSM1388600,GSM1388601,GSM1388602,GSM1388603,GSM1388604,GSM1388605,GSM1388606,GSM1388607,GSM1388608,GSM1388609,GSM1388610,GSM1388611,GSM1388612,GSM1388613,GSM1388614,GSM1388615,GSM1388616,GSM1388617,GSM1388618,GSM1388619,GSM1388620,GSM1388621,GSM1388622,GSM1388623,GSM1388624,GSM1388625,GSM1388626,GSM1388627,GSM1388628,GSM1388629,GSM1388630,GSM1388631
|
2 |
+
Essential_Thrombocythemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Essential_Thrombocythemia/clinical_data/GSE61629.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1388566,GSM1388567,GSM1388568,GSM1388569,GSM1388570,GSM1388571,GSM1388577,GSM1388579,GSM1388582,GSM1388584,GSM1388585,GSM1388587,GSM1388590,GSM1388591,GSM1388592,GSM1388593,GSM1388594,GSM1388595,GSM1388596,GSM1388598,GSM1388599,GSM1388600,GSM1388601,GSM1388603,GSM1388604,GSM1388605,GSM1388606,GSM1388607,GSM1388608,GSM1388614,GSM1388616,GSM1388623,GSM1388624,GSM1509517,GSM1509518,GSM1509519,GSM1509520,GSM1509521,GSM1509522,GSM1509523,GSM1509524,GSM1509525,GSM1509526,GSM1509527,GSM1509528,GSM1509529,GSM1509530,GSM1509531,GSM1509532,GSM1509533,GSM1509534,GSM1509535,GSM1509536,GSM1509537
|
2 |
+
Essential_Thrombocythemia,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Essential_Thrombocythemia/code/GSE103176.py
ADDED
@@ -0,0 +1,232 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Essential_Thrombocythemia"
|
6 |
+
cohort = "GSE103176"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE103176"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE103176.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE103176.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE103176.csv"
|
16 |
+
json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# Series title mentions "Gene... expression profiles", so gene data is available
|
42 |
+
is_gene_available = True
|
43 |
+
|
44 |
+
# 2. Variable Availability and Data Row Identification
|
45 |
+
# 2.1 Data Type Selection and Data Row Identification
|
46 |
+
# Trait (ET vs Control) can be found in row 3 under 'disease'
|
47 |
+
trait_row = 3
|
48 |
+
|
49 |
+
# Age is not provided in the characteristics
|
50 |
+
age_row = None
|
51 |
+
|
52 |
+
# Gender is in row 1 under 'Sex'
|
53 |
+
gender_row = 1
|
54 |
+
|
55 |
+
# 2.2 Data Type Conversion Functions
|
56 |
+
def convert_trait(value: str) -> int:
|
57 |
+
"""Convert disease status to binary (0: control, 1: ET)"""
|
58 |
+
if pd.isna(value):
|
59 |
+
return None
|
60 |
+
value = value.split(': ')[-1].strip().lower()
|
61 |
+
if 'et' in value:
|
62 |
+
return 1
|
63 |
+
elif 'healthy control' in value:
|
64 |
+
return 0
|
65 |
+
return None
|
66 |
+
|
67 |
+
def convert_age(value: str) -> float:
|
68 |
+
"""Convert age to float - not used since age not available"""
|
69 |
+
return None
|
70 |
+
|
71 |
+
def convert_gender(value: str) -> int:
|
72 |
+
"""Convert gender to binary (0: female, 1: male)"""
|
73 |
+
if pd.isna(value):
|
74 |
+
return None
|
75 |
+
value = value.split(': ')[-1].strip().lower()
|
76 |
+
if value == 'f':
|
77 |
+
return 0
|
78 |
+
elif value == 'm':
|
79 |
+
return 1
|
80 |
+
return None
|
81 |
+
|
82 |
+
# 3. Save Metadata
|
83 |
+
is_trait_available = trait_row is not None
|
84 |
+
validate_and_save_cohort_info(
|
85 |
+
is_final=False,
|
86 |
+
cohort=cohort,
|
87 |
+
info_path=json_path,
|
88 |
+
is_gene_available=is_gene_available,
|
89 |
+
is_trait_available=is_trait_available
|
90 |
+
)
|
91 |
+
|
92 |
+
# 4. Extract Clinical Features
|
93 |
+
if trait_row is not None:
|
94 |
+
selected_clinical = geo_select_clinical_features(
|
95 |
+
clinical_df=clinical_data,
|
96 |
+
trait=trait,
|
97 |
+
trait_row=trait_row,
|
98 |
+
convert_trait=convert_trait,
|
99 |
+
age_row=age_row,
|
100 |
+
convert_age=convert_age,
|
101 |
+
gender_row=gender_row,
|
102 |
+
convert_gender=convert_gender
|
103 |
+
)
|
104 |
+
|
105 |
+
# Preview the extracted features
|
106 |
+
preview_result = preview_df(selected_clinical)
|
107 |
+
print("Preview of extracted clinical features:")
|
108 |
+
print(preview_result)
|
109 |
+
|
110 |
+
# Save to CSV
|
111 |
+
selected_clinical.to_csv(out_clinical_data_file)
|
112 |
+
# Extract gene expression data
|
113 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
114 |
+
|
115 |
+
# Print first 20 probe IDs
|
116 |
+
print("First 20 probe IDs:")
|
117 |
+
print(genetic_data.index[:20])
|
118 |
+
# The identifiers appear to be probe IDs from a microarray platform, not standard gene symbols
|
119 |
+
# They need to be mapped to human gene symbols for analysis
|
120 |
+
requires_gene_mapping = True
|
121 |
+
# Extract gene annotation from SOFT file
|
122 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
123 |
+
|
124 |
+
# Preview column names and first few values
|
125 |
+
preview_dict = preview_df(gene_annotation)
|
126 |
+
print("Column names and preview values:")
|
127 |
+
for col, values in preview_dict.items():
|
128 |
+
print(f"\n{col}:")
|
129 |
+
print(values)
|
130 |
+
# Get unique probe IDs from gene expression data to understand the format
|
131 |
+
probe_examples = genetic_data.index[:5].tolist()
|
132 |
+
|
133 |
+
# Extract the complete platform annotation table
|
134 |
+
gene_annotation = get_gene_annotation(soft_file_path, prefixes=['!platform_table_begin', '!platform_table_end'])
|
135 |
+
|
136 |
+
# Extract columns for mapping and rename them
|
137 |
+
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID_REF', gene_col='Gene Symbol')
|
138 |
+
|
139 |
+
# Apply mapping to convert probe-level data to gene-level data
|
140 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
141 |
+
|
142 |
+
# Preview the result
|
143 |
+
print("\nExample probe IDs from expression data:")
|
144 |
+
print(probe_examples)
|
145 |
+
|
146 |
+
print("\nFirst 5 rows of mapping data:")
|
147 |
+
print(mapping_data.head())
|
148 |
+
|
149 |
+
print("\nFirst 5 rows and 3 columns of mapped gene expression data:")
|
150 |
+
print(gene_data.iloc[:5, :3])
|
151 |
+
# Get unique probe IDs from gene expression data to understand the format
|
152 |
+
probe_examples = genetic_data.index[:5].tolist()
|
153 |
+
|
154 |
+
# Extract the complete platform annotation table
|
155 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
156 |
+
print("\nRaw annotation data columns:")
|
157 |
+
print(gene_annotation.columns.tolist())
|
158 |
+
|
159 |
+
# Based on column names in the raw data, we can see that probe IDs are in the 'ID' column
|
160 |
+
# and gene symbols are in the 'Gene Symbol' column
|
161 |
+
mapping_data = pd.DataFrame({
|
162 |
+
'ID': gene_annotation['ID'],
|
163 |
+
'Gene': gene_annotation['Gene Symbol']
|
164 |
+
})
|
165 |
+
|
166 |
+
# Fix any NaN values that might cause mapping issues
|
167 |
+
mapping_data = mapping_data.dropna()
|
168 |
+
|
169 |
+
# Apply mapping to convert probe-level data to gene-level data
|
170 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_data)
|
171 |
+
|
172 |
+
# Save gene expression data
|
173 |
+
gene_data.to_csv(out_gene_data_file)
|
174 |
+
|
175 |
+
# Preview results
|
176 |
+
print("\nExample probe IDs from expression data:")
|
177 |
+
print(probe_examples)
|
178 |
+
|
179 |
+
print("\nFirst 5 rows of mapping data:")
|
180 |
+
print(mapping_data.head())
|
181 |
+
|
182 |
+
print("\nFirst 5 rows and 3 columns of mapped gene expression data:")
|
183 |
+
print(gene_data.iloc[:5, :3])
|
184 |
+
# Check if genetic data is empty
|
185 |
+
if genetic_data.empty:
|
186 |
+
print("Gene expression data is empty - cannot proceed with linking and analysis")
|
187 |
+
# Record failure in cohort info
|
188 |
+
is_usable = validate_and_save_cohort_info(
|
189 |
+
is_final=True,
|
190 |
+
cohort=cohort,
|
191 |
+
info_path=json_path,
|
192 |
+
is_gene_available=False,
|
193 |
+
is_trait_available=True,
|
194 |
+
is_biased=None,
|
195 |
+
df=None,
|
196 |
+
note="Gene mapping failed - unable to match probe IDs between expression and annotation data"
|
197 |
+
)
|
198 |
+
else:
|
199 |
+
# 1. Normalize gene symbols and save normalized gene data
|
200 |
+
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
|
201 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
202 |
+
|
203 |
+
# Read the processed clinical data file
|
204 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
205 |
+
|
206 |
+
# Link clinical and genetic data using the normalized gene data
|
207 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
|
208 |
+
|
209 |
+
# Handle missing values systematically
|
210 |
+
linked_data = handle_missing_values(linked_data, trait)
|
211 |
+
|
212 |
+
# Detect bias in trait and demographic features, remove biased demographic features
|
213 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
214 |
+
|
215 |
+
# Validate data quality and save cohort info
|
216 |
+
note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available."
|
217 |
+
is_usable = validate_and_save_cohort_info(
|
218 |
+
is_final=True,
|
219 |
+
cohort=cohort,
|
220 |
+
info_path=json_path,
|
221 |
+
is_gene_available=True,
|
222 |
+
is_trait_available=True,
|
223 |
+
is_biased=is_biased,
|
224 |
+
df=linked_data,
|
225 |
+
note=note
|
226 |
+
)
|
227 |
+
|
228 |
+
# Save linked data if usable
|
229 |
+
if is_usable:
|
230 |
+
linked_data.to_csv(out_data_file)
|
231 |
+
else:
|
232 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|
p3/preprocess/Essential_Thrombocythemia/code/GSE103237.py
ADDED
@@ -0,0 +1,172 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Essential_Thrombocythemia"
|
6 |
+
cohort = "GSE103237"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE103237"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE103237.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE103237.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE103237.csv"
|
16 |
+
json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json"
|
17 |
+
|
18 |
+
# Get relevant file paths
|
19 |
+
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data from the matrix file
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
|
23 |
+
|
24 |
+
# Get dictionary of unique values per row in clinical data
|
25 |
+
unique_values_dict = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Background Information:")
|
29 |
+
print("-" * 50)
|
30 |
+
print(background_info)
|
31 |
+
print("\n")
|
32 |
+
|
33 |
+
# Print clinical data unique values
|
34 |
+
print("Sample Characteristics:")
|
35 |
+
print("-" * 50)
|
36 |
+
for row, values in unique_values_dict.items():
|
37 |
+
print(f"{row}:")
|
38 |
+
print(f" {values}")
|
39 |
+
print()
|
40 |
+
# 1. Gene Expression Data Availability
|
41 |
+
# Yes, this dataset contains gene expression data, as indicated in the background info
|
42 |
+
# "Gene expression profile (GEP) and miRNA expression profile (miEP) were performed..."
|
43 |
+
is_gene_available = True
|
44 |
+
|
45 |
+
# 2. Variable Availability and Data Type Conversion
|
46 |
+
# 2.1 Data Availability
|
47 |
+
# Trait (Essential Thrombocythemia) can be inferred from disease field (row 3)
|
48 |
+
trait_row = 3
|
49 |
+
|
50 |
+
# Gender is available in row 1
|
51 |
+
gender_row = 1
|
52 |
+
|
53 |
+
# No age information available
|
54 |
+
age_row = None
|
55 |
+
|
56 |
+
# 2.2 Data Type Conversion Functions
|
57 |
+
def convert_trait(value: str) -> int:
|
58 |
+
"""Convert disease status to binary (0: control, 1: ET)"""
|
59 |
+
if not value or 'disease: ' not in value:
|
60 |
+
return None
|
61 |
+
value = value.split('disease: ')[1].strip().lower()
|
62 |
+
if value == 'et':
|
63 |
+
return 1
|
64 |
+
elif value == 'healthy control':
|
65 |
+
return 0
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(value: str) -> int:
|
69 |
+
"""Convert gender to binary (0: female, 1: male)"""
|
70 |
+
if not value or 'Sex: ' not in value:
|
71 |
+
return None
|
72 |
+
value = value.split('Sex: ')[1].strip().lower()
|
73 |
+
if value == 'f':
|
74 |
+
return 0
|
75 |
+
elif value == 'm':
|
76 |
+
return 1
|
77 |
+
return None
|
78 |
+
|
79 |
+
def convert_age(value: str) -> float:
|
80 |
+
"""Placeholder function since age is not available"""
|
81 |
+
return None
|
82 |
+
|
83 |
+
# 3. Save Metadata
|
84 |
+
# Initial filtering based on gene and trait availability
|
85 |
+
validate_and_save_cohort_info(
|
86 |
+
is_final=False,
|
87 |
+
cohort=cohort,
|
88 |
+
info_path=json_path,
|
89 |
+
is_gene_available=is_gene_available,
|
90 |
+
is_trait_available=trait_row is not None
|
91 |
+
)
|
92 |
+
|
93 |
+
# 4. Clinical Feature Extraction
|
94 |
+
if trait_row is not None:
|
95 |
+
# Extract clinical features
|
96 |
+
clinical_df = geo_select_clinical_features(
|
97 |
+
clinical_df=clinical_data,
|
98 |
+
trait=trait,
|
99 |
+
trait_row=trait_row,
|
100 |
+
convert_trait=convert_trait,
|
101 |
+
gender_row=gender_row,
|
102 |
+
convert_gender=convert_gender
|
103 |
+
)
|
104 |
+
|
105 |
+
# Preview the extracted features
|
106 |
+
print("Preview of extracted clinical features:")
|
107 |
+
print(preview_df(clinical_df))
|
108 |
+
|
109 |
+
# Save clinical data
|
110 |
+
clinical_df.to_csv(out_clinical_data_file)
|
111 |
+
# Extract gene expression data
|
112 |
+
genetic_data = get_genetic_data(matrix_file_path)
|
113 |
+
|
114 |
+
# Print first 20 probe IDs
|
115 |
+
print("First 20 probe IDs:")
|
116 |
+
print(genetic_data.index[:20])
|
117 |
+
# These identifiers look like Affymetrix probe IDs (e.g. 11715100_at format)
|
118 |
+
# Rather than standard human gene symbols (e.g. BRCA1)
|
119 |
+
# They will need to be mapped to gene symbols
|
120 |
+
requires_gene_mapping = True
|
121 |
+
# Extract gene annotation from SOFT file
|
122 |
+
gene_annotation = get_gene_annotation(soft_file_path)
|
123 |
+
|
124 |
+
# Preview column names and first few values
|
125 |
+
preview_dict = preview_df(gene_annotation)
|
126 |
+
print("Column names and preview values:")
|
127 |
+
for col, values in preview_dict.items():
|
128 |
+
print(f"\n{col}:")
|
129 |
+
print(values)
|
130 |
+
# Extract probe ID and gene symbol mapping from annotation data
|
131 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
|
132 |
+
|
133 |
+
# Apply gene mapping to convert probe level data to gene level data
|
134 |
+
gene_data = apply_gene_mapping(genetic_data, mapping_df)
|
135 |
+
|
136 |
+
# Preview the results
|
137 |
+
print("First 5 genes and their expression values:")
|
138 |
+
print(preview_df(gene_data.head()))
|
139 |
+
# 1. Normalize gene symbols and save normalized gene data
|
140 |
+
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
|
141 |
+
normalized_gene_data.to_csv(out_gene_data_file)
|
142 |
+
|
143 |
+
# Read the processed clinical data file
|
144 |
+
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
|
145 |
+
|
146 |
+
# Link clinical and genetic data using the normalized gene data
|
147 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
|
148 |
+
|
149 |
+
# Handle missing values systematically
|
150 |
+
linked_data = handle_missing_values(linked_data, trait)
|
151 |
+
|
152 |
+
# Detect bias in trait and demographic features, remove biased demographic features
|
153 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
154 |
+
|
155 |
+
# Validate data quality and save cohort info
|
156 |
+
note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available."
|
157 |
+
is_usable = validate_and_save_cohort_info(
|
158 |
+
is_final=True,
|
159 |
+
cohort=cohort,
|
160 |
+
info_path=json_path,
|
161 |
+
is_gene_available=True,
|
162 |
+
is_trait_available=True,
|
163 |
+
is_biased=is_biased,
|
164 |
+
df=linked_data,
|
165 |
+
note=note
|
166 |
+
)
|
167 |
+
|
168 |
+
# Save linked data if usable
|
169 |
+
if is_usable:
|
170 |
+
linked_data.to_csv(out_data_file)
|
171 |
+
else:
|
172 |
+
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
|