File size: 5,619 Bytes
5bd5338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Essential_Thrombocythemia"
cohort = "GSE12295"
# Input paths
in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia"
in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE12295"
# Output paths
out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE12295.csv"
out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE12295.csv"
out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE12295.csv"
json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# From background info, this is an oligonucleotide array study comparing platelet samples
# Contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
# From characteristics dict:
# Key 0 contains disease status including ET, RT and Normal
trait_row = 0
# Age and gender not available
age_row = None
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(val):
if not isinstance(val, str):
return None
val = val.lower()
if "essential thrombocythemia" in val:
return 1 # Case
elif "normal" in val:
return 0 # Control
else:
return None # RT samples excluded
def convert_age(val):
# Not available
return None
def convert_gender(val):
# Not available
return None
# 3. Save Metadata
# Initial filtering - trait row exists, so trait data is available
is_trait_available = (trait_row is not None)
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available
)
# 4. Clinical Feature Extraction
# Since trait_row exists, extract clinical features
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview_result = preview_df(clinical_df)
print("Preview of extracted clinical features:")
print(preview_result)
# Save to CSV
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These look like probe IDs from a microarray, not gene symbols
# They are numerical values that need to be mapped to actual gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# 1. Identify mapping columns: 'ID' for probe identifiers, 'Gene Symbol' for gene names
# in gene annotation data matches the indices in gene expression data
# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# 3. Apply gene mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview the mapped gene data
preview_result = preview_df(gene_data)
print("\nPreview of gene expression data after mapping:")
print(preview_result)
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |