File size: 6,007 Bytes
5bd5338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Essential_Thrombocythemia"
cohort = "GSE174060"

# Input paths
in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia"
in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE174060"

# Output paths
out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE174060.csv"
out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE174060.csv"
out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE174060.csv"
json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# Gene Expression Data Availability
# Yes, this dataset contains gene expression data from CD34+ cells according to background information
is_gene_available = True

# Data Availability and Type Conversion
trait_row = 4  # Diagnosis is recorded in row 4
age_row = 2    # Age is recorded in row 2 
gender_row = 3 # Sex is recorded in row 3

def convert_trait(x):
    """Convert trait data to binary (0=control, 1=case)"""
    if not isinstance(x, str):
        return None
    value = x.split(": ")[-1].strip().lower()
    if value == "healthy control":
        return 0
    elif value == "et":
        return 1
    return None

def convert_age(x):
    """Convert age data to continuous values"""
    if not isinstance(x, str):
        return None
    try:
        age = int(x.split(": ")[-1])
        return age
    except:
        return None

def convert_gender(x):
    """Convert gender data to binary (0=female, 1=male)"""
    if not isinstance(x, str):
        return None
    value = x.split(": ")[-1].strip().upper()
    if value == "F":
        return 0
    elif value == "M":
        return 1
    return None

# Initial validation
validate_and_save_cohort_info(is_final=False, 
                             cohort=cohort,
                             info_path=json_path,
                             is_gene_available=is_gene_available,
                             is_trait_available=trait_row is not None)

# Extract clinical features
selected_clinical = geo_select_clinical_features(clinical_data, 
                                               trait=trait,
                                               trait_row=trait_row,
                                               convert_trait=convert_trait,
                                               age_row=age_row,
                                               convert_age=convert_age, 
                                               gender_row=gender_row,
                                               convert_gender=convert_gender)

# Preview the data
preview = preview_df(selected_clinical)
print("Preview of selected clinical features:")
print(preview)

# Save clinical data
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These are probe IDs from Affymetrix transcriptome arrays (TC prefix) that need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
    print(f"\n{col}:")
    print(values)
# Extract gene mapping from annotation data
# 'ID' column matches probe IDs in expression data
# 'gene_assignment' contains gene symbols in the format "RefSeq_ID // Gene_Symbol // Description"
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')

# Apply gene mapping to convert probe data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_df)

# Normalize gene symbols using NCBI standard symbols
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save the processed gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data) 
normalized_gene_data.to_csv(out_gene_data_file)

# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# Handle missing values systematically 
linked_data = handle_missing_values(linked_data, trait)

# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate data quality and save cohort info
note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True, 
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")