File size: 5,602 Bytes
5bd5338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Essential_Thrombocythemia"
cohort = "GSE55976"
# Input paths
in_trait_dir = "../DATA/GEO/Essential_Thrombocythemia"
in_cohort_dir = "../DATA/GEO/Essential_Thrombocythemia/GSE55976"
# Output paths
out_data_file = "./output/preprocess/3/Essential_Thrombocythemia/GSE55976.csv"
out_gene_data_file = "./output/preprocess/3/Essential_Thrombocythemia/gene_data/GSE55976.csv"
out_clinical_data_file = "./output/preprocess/3/Essential_Thrombocythemia/clinical_data/GSE55976.csv"
json_path = "./output/preprocess/3/Essential_Thrombocythemia/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# The title and study design indicate gene expression profiling using cDNA microarrays
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Row identifiers in sample characteristics
trait_row = 0 # Disease condition is in row 0
age_row = None # Age not available
gender_row = None # Gender not available
# 2.2 Conversion functions
def convert_trait(value):
if not isinstance(value, str):
return None
value = value.split(': ')[-1].strip().lower()
# Convert to binary for Essential Thrombocythemia
if 'essential thrombocythemia' in value:
return 1
elif value in ['polycythemia vera (pv)', 'primary myelofibrosis jak2+',
'primary myelofibrosis jak2-', 'chronic myelogenous leukemia',
'healthy donor']:
return 0
return None
def convert_age(value):
# Not used since age data unavailable
return None
def convert_gender(value):
# Not used since gender data unavailable
return None
# 3. Save initial filtering metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
if trait_row is not None:
selected_clinical = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
preview = preview_df(selected_clinical)
print("Preview of selected clinical features:")
print(preview)
# Save to CSV
selected_clinical.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These identifiers (6590728, 6590730, etc.) appear to be probe IDs, not human gene symbols
# They look like Illumina probe IDs which need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# 1. Identify columns for gene identifier and gene symbol
# In gene_annotation, 'ID' column matches probe IDs in genetic_data
# 'GENE SYMBOL' column contains the corresponding gene symbols
prob_col = 'ID'
gene_col = 'GENE SYMBOL'
# 2. Get gene mapping dataframe
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Expression data comparing patients with Essential Thrombocythemia to controls with other myeloproliferative disorders (PMF, PV). No age or gender data available."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |