File size: 4,882 Bytes
5bd5338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Gaucher_Disease"
cohort = "GSE124283"

# Input paths
in_trait_dir = "../DATA/GEO/Gaucher_Disease"
in_cohort_dir = "../DATA/GEO/Gaucher_Disease/GSE124283"

# Output paths
out_data_file = "./output/preprocess/3/Gaucher_Disease/GSE124283.csv"
out_gene_data_file = "./output/preprocess/3/Gaucher_Disease/gene_data/GSE124283.csv"
out_clinical_data_file = "./output/preprocess/3/Gaucher_Disease/clinical_data/GSE124283.csv"
json_path = "./output/preprocess/3/Gaucher_Disease/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data
# Since this is a microarray study of gene expression changes in skin fibroblasts,
# gene expression data should be available
is_gene_available = True

# 2. Variable Availability and Conversion Functions
# 2.1 Data rows
trait_row = 2  # 'condition' field contains disease status
gender_row = 3  # 'gender' field is available
age_row = None # Age information not available

# 2.2 Conversion Functions
def convert_trait(value: str) -> int:
    """Convert trait values to binary (0: control, 1: Gaucher)"""
    if not value or "N/A" in value:
        return None
    value = value.split(": ")[1] if ": " in value else value
    if "Control" in value:
        return 0
    elif "Gaucher" in value:
        return 1
    return None  # Other conditions like NPC are not relevant

def convert_gender(value: str) -> int:
    """Convert gender values to binary (0: female, 1: male)"""
    if not value or "N/A" in value:
        return None
    value = value.split(": ")[1] if ": " in value else value
    if value == "K":  # K likely means "kobieta" (female in Polish)
        return 0
    elif value == "M":  # M likely means male
        return 1
    return None

# 3. Save Metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, 
                            cohort=cohort,
                            info_path=json_path,
                            is_gene_available=is_gene_available,
                            is_trait_available=is_trait_available)

# 4. Clinical Feature Extraction
# Since trait_row is not None, we proceed with feature extraction
selected_clinical_df = geo_select_clinical_features(
    clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    gender_row=gender_row,
    convert_gender=convert_gender
)

# Preview the selected features
print("Preview of selected clinical features:")
print(preview_df(selected_clinical_df))

# Save to CSV
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These gene IDs look like human gene symbols (e.g., A1BG, A2M, AAAS, AACS etc.)
# Therefore no mapping is required
requires_gene_mapping = False
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(genetic_data)
normalized_gene_data.to_csv(out_gene_data_file)

# Read the processed clinical data file 
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate data quality and save cohort info
note = "Gene expression data from fibroblasts of Gaucher disease patients and healthy controls. Also contains samples from NPC disease patients which were excluded from analysis."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")