File size: 12,486 Bytes
5bd5338 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Generalized_Anxiety_Disorder"
cohort = "GSE61672"
# Input paths
in_trait_dir = "../DATA/GEO/Generalized_Anxiety_Disorder"
in_cohort_dir = "../DATA/GEO/Generalized_Anxiety_Disorder/GSE61672"
# Output paths
out_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/GSE61672.csv"
out_gene_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv"
out_clinical_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/clinical_data/GSE61672.csv"
json_path = "./output/preprocess/3/Generalized_Anxiety_Disorder/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
is_gene_available = True # Series description mentions genome-wide gene expression
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 4 # anxiety case/control is in row 4
age_row = 0 # age data in row 0
gender_row = 1 # Sex data in row 1
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if not isinstance(value, str):
return None
if "anxiety case/control:" not in value:
return None
value = value.split("anxiety case/control:")[1].strip()
if value == "case":
return 1
elif value == "control":
return 0
return None
def convert_age(value):
if not isinstance(value, str):
return None
if "age:" not in value:
return None
try:
age = int(value.split("age:")[1].strip())
return age
except:
return None
def convert_gender(value):
if not isinstance(value, str):
return None
if "Sex:" not in value:
return None
sex = value.split("Sex:")[1].strip()
if sex == "F":
return 0
elif sex == "M":
return 1
return None
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=trait_row is not None)
# 4. Clinical Feature Extraction
clinical_data = pd.DataFrame({'Sample': [], 'Value': []})
clinical_data.set_index('Sample', inplace=True)
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
age_row, convert_age,
gender_row, convert_gender)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
selected_clinical.to_csv(out_clinical_data_file)
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These are Illumina probe IDs (starting with "ILMN_"), not human gene symbols
# They need to be mapped to official gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# Extract ID and Symbol columns for mapping
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')
# Convert probe expression values to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Normalize gene symbols in resulting dataframe
gene_data = normalize_gene_symbols_in_index(gene_data)
# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)
# 2. Extract clinical features from clinical_data and save
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
age_row, convert_age,
gender_row, convert_gender)
selected_clinical.to_csv(out_clinical_data_file)
# 3. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)
# 4. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 5. Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate data quality and save cohort info
note = "Blood gene expression data from Generalized Anxiety Disorder patients and healthy controls, with good sample size and complete trait information."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Extract ID and Symbol columns for mapping
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')
# Convert probe expression values to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Get gene expression data and mapping
genetic_data = get_genetic_data(matrix_file_path)
gene_annotation = get_gene_annotation(soft_file_path)
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)
# 2. Extract and save clinical features
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
age_row, convert_age,
gender_row, convert_gender)
selected_clinical.to_csv(out_clinical_data_file)
# 3. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)
# 4. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# 5. Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# 6. Validate data quality and save cohort info
note = "Blood gene expression data from Generalized Anxiety Disorder patients and healthy controls, with good sample size and complete trait information."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# 7. Save linked data if usable
if is_usable:
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# From background info, we can see this is a blood gene expression study
is_gene_available = True
# 2.1 Identify row numbers for clinical features
trait_row = 4 # 'anxiety case/control' appears in row 4
age_row = 0 # 'age' appears in row 0
gender_row = 1 # 'Sex' appears in row 1
# 2.2 Define conversion functions
def convert_trait(value: Any) -> Optional[float]:
"""Convert anxiety case/control status to binary"""
if pd.isna(value):
return None
if isinstance(value, (int, float)):
return float(value)
if not value or value == '.':
return None
value = str(value).split(': ')[-1].lower()
if 'case' in value:
return 1.0
elif 'control' in value:
return 0.0
return None
def convert_age(value: Any) -> Optional[float]:
"""Convert age to float"""
if pd.isna(value):
return None
if isinstance(value, (int, float)):
return float(value)
if not value or value == '.':
return None
try:
return float(str(value).split(': ')[-1])
except:
return None
def convert_gender(value: Any) -> Optional[float]:
"""Convert gender to binary (F=0, M=1)"""
if pd.isna(value):
return None
if isinstance(value, (int, float)):
return float(value)
if not value or value == '.':
return None
value = str(value).split(': ')[-1].upper()
if value == 'F':
return 0.0
elif value == 'M':
return 1.0
return None
# 3. Save metadata
is_trait_available = trait_row is not None # True in this case
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features and save
if clinical_data is not None and len(clinical_data) > 0:
selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical_df))
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
else:
print("Warning: clinical_data is empty or not initialized")
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20]) |