File size: 12,486 Bytes
5bd5338
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Generalized_Anxiety_Disorder"
cohort = "GSE61672"

# Input paths
in_trait_dir = "../DATA/GEO/Generalized_Anxiety_Disorder"
in_cohort_dir = "../DATA/GEO/Generalized_Anxiety_Disorder/GSE61672"

# Output paths
out_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/GSE61672.csv"
out_gene_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv"
out_clinical_data_file = "./output/preprocess/3/Generalized_Anxiety_Disorder/clinical_data/GSE61672.csv"
json_path = "./output/preprocess/3/Generalized_Anxiety_Disorder/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability 
is_gene_available = True  # Series description mentions genome-wide gene expression

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 4  # anxiety case/control is in row 4
age_row = 0  # age data in row 0
gender_row = 1  # Sex data in row 1

# 2.2 Data Type Conversion Functions
def convert_trait(value):
    if not isinstance(value, str):
        return None
    if "anxiety case/control:" not in value:
        return None
    value = value.split("anxiety case/control:")[1].strip()
    if value == "case":
        return 1
    elif value == "control":
        return 0
    return None

def convert_age(value):
    if not isinstance(value, str):
        return None
    if "age:" not in value:
        return None
    try:
        age = int(value.split("age:")[1].strip())
        return age
    except:
        return None

def convert_gender(value):
    if not isinstance(value, str):
        return None
    if "Sex:" not in value:
        return None
    sex = value.split("Sex:")[1].strip()
    if sex == "F":
        return 0
    elif sex == "M":
        return 1
    return None

# 3. Save Metadata
validate_and_save_cohort_info(is_final=False, 
                             cohort=cohort,
                             info_path=json_path,
                             is_gene_available=is_gene_available,
                             is_trait_available=trait_row is not None)

# 4. Clinical Feature Extraction
clinical_data = pd.DataFrame({'Sample': [], 'Value': []})
clinical_data.set_index('Sample', inplace=True)

selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
                                               age_row, convert_age, 
                                               gender_row, convert_gender)
print("Preview of selected clinical features:")
print(preview_df(selected_clinical))
selected_clinical.to_csv(out_clinical_data_file)
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These are Illumina probe IDs (starting with "ILMN_"), not human gene symbols
# They need to be mapped to official gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
    print(f"\n{col}:")
    print(values)
# Extract ID and Symbol columns for mapping
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')

# Convert probe expression values to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Normalize gene symbols in resulting dataframe
gene_data = normalize_gene_symbols_in_index(gene_data)

# Save gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save normalized gene data
gene_data = normalize_gene_symbols_in_index(gene_data)
gene_data.to_csv(out_gene_data_file)

# 2. Extract clinical features from clinical_data and save
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
                                               age_row, convert_age, 
                                               gender_row, convert_gender)
selected_clinical.to_csv(out_clinical_data_file)

# 3. Link clinical and genetic data 
linked_data = geo_link_clinical_genetic_data(selected_clinical, gene_data)

# 4. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 5. Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate data quality and save cohort info
note = "Blood gene expression data from Generalized Anxiety Disorder patients and healthy controls, with good sample size and complete trait information."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Extract gene annotation from SOFT file 
gene_annotation = get_gene_annotation(soft_file_path)

# Extract ID and Symbol columns for mapping
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')

# Convert probe expression values to gene expression values
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Get gene expression data and mapping
genetic_data = get_genetic_data(matrix_file_path)
gene_annotation = get_gene_annotation(soft_file_path)
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Symbol')
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
normalized_gene_data.to_csv(out_gene_data_file)

# 2. Extract and save clinical features 
selected_clinical = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
                                               age_row, convert_age, 
                                               gender_row, convert_gender)
selected_clinical.to_csv(out_clinical_data_file)

# 3. Link clinical and genetic data
linked_data = geo_link_clinical_genetic_data(selected_clinical, normalized_gene_data)

# 4. Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# 5. Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# 6. Validate data quality and save cohort info
note = "Blood gene expression data from Generalized Anxiety Disorder patients and healthy controls, with good sample size and complete trait information."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# 7. Save linked data if usable
if is_usable:
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# From background info, we can see this is a blood gene expression study
is_gene_available = True

# 2.1 Identify row numbers for clinical features
trait_row = 4  # 'anxiety case/control' appears in row 4
age_row = 0    # 'age' appears in row 0 
gender_row = 1  # 'Sex' appears in row 1

# 2.2 Define conversion functions
def convert_trait(value: Any) -> Optional[float]:
    """Convert anxiety case/control status to binary"""
    if pd.isna(value):
        return None
    if isinstance(value, (int, float)):
        return float(value)
    if not value or value == '.':
        return None
    value = str(value).split(': ')[-1].lower()
    if 'case' in value:
        return 1.0
    elif 'control' in value:
        return 0.0
    return None

def convert_age(value: Any) -> Optional[float]:
    """Convert age to float"""
    if pd.isna(value):
        return None
    if isinstance(value, (int, float)):
        return float(value)
    if not value or value == '.':
        return None
    try:
        return float(str(value).split(': ')[-1])
    except:
        return None

def convert_gender(value: Any) -> Optional[float]:
    """Convert gender to binary (F=0, M=1)"""
    if pd.isna(value):
        return None
    if isinstance(value, (int, float)):
        return float(value)
    if not value or value == '.':
        return None
    value = str(value).split(': ')[-1].upper()
    if value == 'F':
        return 0.0
    elif value == 'M':
        return 1.0
    return None

# 3. Save metadata
is_trait_available = trait_row is not None  # True in this case
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
                            is_gene_available=is_gene_available, 
                            is_trait_available=is_trait_available)

# 4. Extract clinical features and save
if clinical_data is not None and len(clinical_data) > 0:
    selected_clinical_df = geo_select_clinical_features(clinical_df=clinical_data,
                                                      trait=trait,
                                                      trait_row=trait_row,
                                                      convert_trait=convert_trait,
                                                      age_row=age_row,
                                                      convert_age=convert_age,
                                                      gender_row=gender_row,
                                                      convert_gender=convert_gender)

    print("Preview of selected clinical features:")
    print(preview_df(selected_clinical_df))

    # Save clinical data
    selected_clinical_df.to_csv(out_clinical_data_file)
else:
    print("Warning: clinical_data is empty or not initialized")
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])