File size: 6,361 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Glioblastoma"
cohort = "GSE249289"
# Input paths
in_trait_dir = "../DATA/GEO/Glioblastoma"
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE249289"
# Output paths
out_data_file = "./output/preprocess/3/Glioblastoma/GSE249289.csv"
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE249289.csv"
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE249289.csv"
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
# Get file paths
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
# Get unique values per clinical feature
sample_characteristics = get_unique_values_by_row(clinical_data)
# Print background info
print("Dataset Background Information:")
print(f"{background_info}\n")
# Print sample characteristics
print("Sample Characteristics:")
for feature, values in sample_characteristics.items():
print(f"Feature: {feature}")
print(f"Values: {values}\n")
# 1. Gene expression data availability check
is_gene_available = True # Based on series title and design, this is gene expression data
# 2. Data availability and conversion functions
trait_row = None # No direct disease status as all samples are glioblastoma
age_row = 2 # Age information is in row 2
gender_row = 1 # Gender information is in row 1
def convert_age(x):
try:
# Extract numeric value after colon
age = int(x.split(': ')[1])
return age
except:
return None
def convert_gender(x):
try:
# Extract value after colon and convert to binary
gender = x.split(': ')[1].lower()
if gender == 'female':
return 0
elif gender == 'male':
return 1
return None
except:
return None
def convert_trait(x):
# Not used as trait data not available
return None
# 3. Save metadata
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Extract clinical features if available
# Skip this step since trait_row is None
# Extract gene expression data from matrix file
gene_data = get_genetic_data(matrix_file)
# Print first 20 row IDs and shape of data to help debug
print("Shape of gene expression data:", gene_data.shape)
print("\nFirst few rows of data:")
print(gene_data.head())
print("\nFirst 20 gene/probe identifiers:")
print(gene_data.index[:20])
# Inspect a snippet of raw file to verify identifier format
import gzip
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
lines = []
for i, line in enumerate(f):
if "!series_matrix_table_begin" in line:
# Get the next 5 lines after the marker
for _ in range(5):
lines.append(next(f).strip())
break
print("\nFirst few lines after matrix marker in raw file:")
for line in lines:
print(line)
# The identifiers start with "ILMN_" which indicates they are Illumina probe IDs
# These need to be mapped to official human gene symbols for analysis
requires_gene_mapping = True
# Get file paths using library function
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file)
# Preview gene annotation data
print("Gene annotation columns and example values:")
print(preview_df(gene_annotation))
# Get mapping dataframe with ID and Symbol columns from gene annotation
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply mapping to convert probe-level measurements to gene expression data
gene_data = apply_gene_mapping(gene_data, gene_mapping)
# Print shape and preview to verify the mapping result
print("Shape of gene expression data after mapping:", gene_data.shape)
print("\nFirst few rows of mapped data:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Extract clinical features and link with genetic data
clinical_features = geo_select_clinical_features(
clinical_data,
trait=trait,
trait_row=None,
age_row=2,
convert_age=convert_age,
gender_row=1,
convert_gender=convert_gender
)
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
# 3. Handle missing values
linked_data = handle_missing_values(linked_data, "Age") # Use Age as primary feature since trait is not available
# 4. Check for biased features and remove them if needed
is_biased = False # Only demographic features, no trait to be biased
linked_data = judge_and_remove_biased_features(linked_data, "Age")[1] # Use Age since trait is not available
# 5. Validate and save cohort info
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=is_biased,
df=linked_data,
note="Contains gene expression data with age and gender information, but no trait data for analysis"
)
# 6. Save linked data with demographic features
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
# 1. Normalize gene symbols and save normalized gene data
gene_data.index = gene_data.index.str.replace('-mRNA', '')
gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
gene_data.to_csv(out_gene_data_file)
# 2. Record metadata about dataset's unavailability for trait analysis
validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=False,
is_biased=None,
df=None,
note="Contains gene expression data from glioblastoma tumorspheres but no control samples for trait analysis"
) |