Add files using upload-large-folder tool
Browse filesThis view is limited to 50 files because it contains too many changes.
See raw diff
- .gitattributes +34 -0
- p3/preprocess/COVID-19/gene_data/TCGA.csv +3 -0
- p3/preprocess/Eczema/gene_data/TCGA.csv +3 -0
- p3/preprocess/Esophageal_Cancer/GSE156915.csv +3 -0
- p3/preprocess/Esophageal_Cancer/gene_data/GSE156915.csv +3 -0
- p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/TCGA.csv +3 -0
- p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE43580.csv +3 -0
- p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/TCGA.csv +3 -0
- p3/preprocess/Gaucher_Disease/GSE124283.csv +3 -0
- p3/preprocess/Gaucher_Disease/gene_data/GSE124283.csv +3 -0
- p3/preprocess/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv +3 -0
- p3/preprocess/Glioblastoma/code/GSE134470.py +168 -0
- p3/preprocess/Glioblastoma/code/GSE159000.py +165 -0
- p3/preprocess/Glioblastoma/code/GSE175700.py +124 -0
- p3/preprocess/Glioblastoma/code/GSE178236.py +177 -0
- p3/preprocess/Glioblastoma/code/GSE226976.py +146 -0
- p3/preprocess/Glioblastoma/code/GSE249289.py +180 -0
- p3/preprocess/Glioblastoma/code/GSE279426.py +159 -0
- p3/preprocess/Glioblastoma/code/GSE39144.py +188 -0
- p3/preprocess/Glioblastoma/code/TCGA.py +97 -0
- p3/preprocess/Glioblastoma/gene_data/GSE134470.csv +3 -0
- p3/preprocess/Glioblastoma/gene_data/GSE148949.csv +3 -0
- p3/preprocess/Glioblastoma/gene_data/GSE159000.csv +0 -0
- p3/preprocess/Glioblastoma/gene_data/GSE175700.csv +3 -0
- p3/preprocess/Glioblastoma/gene_data/GSE178236.csv +3 -0
- p3/preprocess/Glioblastoma/gene_data/GSE226976.csv +0 -0
- p3/preprocess/Glioblastoma/gene_data/GSE249289.csv +0 -0
- p3/preprocess/Glioblastoma/gene_data/GSE279426.csv +0 -0
- p3/preprocess/Glioblastoma/gene_data/GSE39144.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE15820.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE32962.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE33649.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE42002.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE48801.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE50012.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE57795.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE58715.csv +0 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE65645.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/GSE66705.csv +3 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE15820.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE32962.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE33649.csv +4 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE42002.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE48801.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE50012.csv +4 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE57795.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE58715.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE65645.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE66705.csv +2 -0
- p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/TCGA.csv +93 -0
.gitattributes
CHANGED
@@ -1690,3 +1690,37 @@ p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/GSE77563.csv filter=lfs dif
|
|
1690 |
p3/preprocess/Esophageal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1691 |
p3/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv filter=lfs diff=lfs merge=lfs -text
|
1692 |
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1690 |
p3/preprocess/Esophageal_Cancer/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1691 |
p3/preprocess/Essential_Thrombocythemia/gene_data/GSE159514.csv filter=lfs diff=lfs merge=lfs -text
|
1692 |
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE77563.csv filter=lfs diff=lfs merge=lfs -text
|
1693 |
+
p3/preprocess/Gaucher_Disease/GSE124283.csv filter=lfs diff=lfs merge=lfs -text
|
1694 |
+
p3/preprocess/Esophageal_Cancer/GSE156915.csv filter=lfs diff=lfs merge=lfs -text
|
1695 |
+
p3/preprocess/Gaucher_Disease/gene_data/GSE124283.csv filter=lfs diff=lfs merge=lfs -text
|
1696 |
+
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE43580.csv filter=lfs diff=lfs merge=lfs -text
|
1697 |
+
p3/preprocess/COVID-19/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1698 |
+
p3/preprocess/Esophageal_Cancer/gene_data/GSE156915.csv filter=lfs diff=lfs merge=lfs -text
|
1699 |
+
p3/preprocess/Glioblastoma/gene_data/GSE175700.csv filter=lfs diff=lfs merge=lfs -text
|
1700 |
+
p3/preprocess/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv filter=lfs diff=lfs merge=lfs -text
|
1701 |
+
p3/preprocess/Glioblastoma/gene_data/GSE178236.csv filter=lfs diff=lfs merge=lfs -text
|
1702 |
+
p3/preprocess/Eczema/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1703 |
+
p3/preprocess/Glioblastoma/gene_data/GSE134470.csv filter=lfs diff=lfs merge=lfs -text
|
1704 |
+
p3/preprocess/Glioblastoma/gene_data/GSE39144.csv filter=lfs diff=lfs merge=lfs -text
|
1705 |
+
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1706 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE32962.csv filter=lfs diff=lfs merge=lfs -text
|
1707 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE33649.csv filter=lfs diff=lfs merge=lfs -text
|
1708 |
+
p3/preprocess/Glioblastoma/gene_data/GSE148949.csv filter=lfs diff=lfs merge=lfs -text
|
1709 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE15820.csv filter=lfs diff=lfs merge=lfs -text
|
1710 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE65645.csv filter=lfs diff=lfs merge=lfs -text
|
1711 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE57795.csv filter=lfs diff=lfs merge=lfs -text
|
1712 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE50012.csv filter=lfs diff=lfs merge=lfs -text
|
1713 |
+
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1714 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE42002.csv filter=lfs diff=lfs merge=lfs -text
|
1715 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE32962.csv filter=lfs diff=lfs merge=lfs -text
|
1716 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE15820.csv filter=lfs diff=lfs merge=lfs -text
|
1717 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE33649.csv filter=lfs diff=lfs merge=lfs -text
|
1718 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE57795.csv filter=lfs diff=lfs merge=lfs -text
|
1719 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE66705.csv filter=lfs diff=lfs merge=lfs -text
|
1720 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE65645.csv filter=lfs diff=lfs merge=lfs -text
|
1721 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE50012.csv filter=lfs diff=lfs merge=lfs -text
|
1722 |
+
p3/preprocess/Head_and_Neck_Cancer/GSE148320.csv filter=lfs diff=lfs merge=lfs -text
|
1723 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/GSE42002.csv filter=lfs diff=lfs merge=lfs -text
|
1724 |
+
p3/preprocess/Head_and_Neck_Cancer/GSE151179.csv filter=lfs diff=lfs merge=lfs -text
|
1725 |
+
p3/preprocess/Glucocorticoid_Sensitivity/gene_data/TCGA.csv filter=lfs diff=lfs merge=lfs -text
|
1726 |
+
p3/preprocess/Glucocorticoid_Sensitivity/GSE48801.csv filter=lfs diff=lfs merge=lfs -text
|
p3/preprocess/COVID-19/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:96c986e5a3d878aa4fe521d4d98915e250b7f0cdb97445343a36450f05661288
|
3 |
+
size 339317879
|
p3/preprocess/Eczema/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca538730424e09dc117dcbf2b9e361e18a559838fbd5166c65c39e001c215c63
|
3 |
+
size 203622702
|
p3/preprocess/Esophageal_Cancer/GSE156915.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a3680b0c2e3bb6d39bd51615899136f6b359faf3767f8d5cd3cc0e55b9aac038
|
3 |
+
size 95348282
|
p3/preprocess/Esophageal_Cancer/gene_data/GSE156915.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2879a4bafeabb89373f8e8048fc81105fb8bf2230ea6cf71844e326693130272
|
3 |
+
size 95359844
|
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:72248483bc99d617c84a7b391fd1575bd9b624063cc67a810643f05706d1de5e
|
3 |
+
size 58742455
|
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/GSE43580.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:a5af619a5350088586843a2ad5dd0ce92c077ec4cdd74fc0297b02f37b76f097
|
3 |
+
size 32761120
|
p3/preprocess/Gastroesophageal_reflux_disease_(GERD)/gene_data/TCGA.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:be8b1dd125bb45c3b527f42bfa3ddd3ac8a86d1f3a92868da89995845df4ef72
|
3 |
+
size 58741039
|
p3/preprocess/Gaucher_Disease/GSE124283.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dbf6cdbb730efd1adf7554a986616bb380f611a86075081385f38551a533ccaf
|
3 |
+
size 13242720
|
p3/preprocess/Gaucher_Disease/gene_data/GSE124283.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:41a70b3aa68b2dd43e6127a1a309f3a499310049e83ceb4c78ff1c8dbdd3b562
|
3 |
+
size 26822063
|
p3/preprocess/Generalized_Anxiety_Disorder/gene_data/GSE61672.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:dc3ec7db3721c2df4aee7f88f4d34dde6e8caea3f63df7c671a696f04352165c
|
3 |
+
size 33639737
|
p3/preprocess/Glioblastoma/code/GSE134470.py
ADDED
@@ -0,0 +1,168 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE134470"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE134470"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE134470.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE134470.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE134470.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on background info, this is a gene expression microarray study with GeneChip® Human Gene 1.0ST array
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# Trait data is available in feature 0 - distinguishes normal brain vs GBM samples
|
42 |
+
trait_row = 0
|
43 |
+
|
44 |
+
# Age and gender not available in sample characteristics
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
def convert_trait(value: str) -> Optional[float]:
|
49 |
+
"""Convert tissue/sample type to binary: 0 for normal, 1 for GBM"""
|
50 |
+
if pd.isna(value):
|
51 |
+
return None
|
52 |
+
value = value.split(": ")[-1].lower()
|
53 |
+
if "normal brain" in value:
|
54 |
+
return 0.0
|
55 |
+
elif any(x in value for x in ["gbm", "tumor"]):
|
56 |
+
return 1.0
|
57 |
+
return None
|
58 |
+
|
59 |
+
def convert_age(value: str) -> Optional[float]:
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_gender(value: str) -> Optional[float]:
|
63 |
+
return None
|
64 |
+
|
65 |
+
# 3. Save metadata - only initial filtering
|
66 |
+
validate_and_save_cohort_info(
|
67 |
+
is_final=False,
|
68 |
+
cohort=cohort,
|
69 |
+
info_path=json_path,
|
70 |
+
is_gene_available=is_gene_available,
|
71 |
+
is_trait_available=(trait_row is not None)
|
72 |
+
)
|
73 |
+
|
74 |
+
# 4. Clinical Feature Extraction
|
75 |
+
if trait_row is not None:
|
76 |
+
clinical_features = geo_select_clinical_features(
|
77 |
+
clinical_df=clinical_data,
|
78 |
+
trait=trait,
|
79 |
+
trait_row=trait_row,
|
80 |
+
convert_trait=convert_trait,
|
81 |
+
age_row=age_row,
|
82 |
+
convert_age=convert_age,
|
83 |
+
gender_row=gender_row,
|
84 |
+
convert_gender=convert_gender
|
85 |
+
)
|
86 |
+
|
87 |
+
# Preview the extracted features
|
88 |
+
preview_df(clinical_features)
|
89 |
+
|
90 |
+
# Save clinical data
|
91 |
+
clinical_features.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from matrix file
|
93 |
+
gene_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# Print first 20 row IDs and shape of data to help debug
|
96 |
+
print("Shape of gene expression data:", gene_data.shape)
|
97 |
+
print("\nFirst few rows of data:")
|
98 |
+
print(gene_data.head())
|
99 |
+
print("\nFirst 20 gene/probe identifiers:")
|
100 |
+
print(gene_data.index[:20])
|
101 |
+
|
102 |
+
# Inspect a snippet of raw file to verify identifier format
|
103 |
+
import gzip
|
104 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
105 |
+
lines = []
|
106 |
+
for i, line in enumerate(f):
|
107 |
+
if "!series_matrix_table_begin" in line:
|
108 |
+
# Get the next 5 lines after the marker
|
109 |
+
for _ in range(5):
|
110 |
+
lines.append(next(f).strip())
|
111 |
+
break
|
112 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
113 |
+
for line in lines:
|
114 |
+
print(line)
|
115 |
+
# Looking at the identifiers (e.g. 7892501, 7892502) which are numeric and non-standard,
|
116 |
+
# and based on the raw file format starting with ID_REF, these appear to be probe IDs
|
117 |
+
# rather than gene symbols and will need to be mapped to gene symbols
|
118 |
+
requires_gene_mapping = True
|
119 |
+
# Get file paths using library function
|
120 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
121 |
+
|
122 |
+
# Extract gene annotation from SOFT file
|
123 |
+
gene_annotation = get_gene_annotation(soft_file)
|
124 |
+
|
125 |
+
# Preview gene annotation data
|
126 |
+
print("Gene annotation columns and example values:")
|
127 |
+
print(preview_df(gene_annotation))
|
128 |
+
# 1. From previews we can see 'ID' column matches the gene expression row IDs, and 'gene_assignment' has gene symbols
|
129 |
+
|
130 |
+
# 2. Get mapping between probe IDs and gene symbols
|
131 |
+
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'gene_assignment')
|
132 |
+
|
133 |
+
# 3. Convert probe-level measurements to gene expression data using the mapping
|
134 |
+
gene_data = apply_gene_mapping(gene_data, mapping_data)
|
135 |
+
|
136 |
+
# Save gene data to file
|
137 |
+
gene_data.to_csv(out_gene_data_file)
|
138 |
+
# 1. Normalize gene symbols and save normalized gene data
|
139 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
140 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
141 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
142 |
+
gene_data.to_csv(out_gene_data_file)
|
143 |
+
|
144 |
+
# 2. Link clinical and genetic data
|
145 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
146 |
+
|
147 |
+
# 3. Handle missing values
|
148 |
+
linked_data = handle_missing_values(linked_data, trait)
|
149 |
+
|
150 |
+
# 4. Check for biased features and remove them if needed
|
151 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
152 |
+
|
153 |
+
# 5. Validate and save cohort info
|
154 |
+
is_usable = validate_and_save_cohort_info(
|
155 |
+
is_final=True,
|
156 |
+
cohort=cohort,
|
157 |
+
info_path=json_path,
|
158 |
+
is_gene_available=True,
|
159 |
+
is_trait_available=True,
|
160 |
+
is_biased=is_biased,
|
161 |
+
df=linked_data,
|
162 |
+
note="Clinical trial studying EGFR amplification in glioblastoma and response to gefitinib"
|
163 |
+
)
|
164 |
+
|
165 |
+
# 6. Save linked data if usable
|
166 |
+
if is_usable:
|
167 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
168 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Glioblastoma/code/GSE159000.py
ADDED
@@ -0,0 +1,165 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE159000"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE159000"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE159000.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE159000.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE159000.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# Gene expression data is available according to dataset title ("Gene expression profiles...")
|
37 |
+
is_gene_available = True
|
38 |
+
|
39 |
+
# Trait data not explicitly available but all samples are GBM according to background
|
40 |
+
trait_row = 0 # Use tissue type as trait indicator
|
41 |
+
|
42 |
+
# Age and gender data available
|
43 |
+
age_row = 2
|
44 |
+
gender_row = 1
|
45 |
+
|
46 |
+
def convert_trait(value):
|
47 |
+
if not isinstance(value, str):
|
48 |
+
return None
|
49 |
+
if "brain" in value.lower():
|
50 |
+
return 1 # All samples are GBM according to background
|
51 |
+
return None
|
52 |
+
|
53 |
+
def convert_age(value):
|
54 |
+
if not isinstance(value, str):
|
55 |
+
return None
|
56 |
+
try:
|
57 |
+
age = float(value.split(': ')[1])
|
58 |
+
return age
|
59 |
+
except:
|
60 |
+
return None
|
61 |
+
|
62 |
+
def convert_gender(value):
|
63 |
+
if not isinstance(value, str):
|
64 |
+
return None
|
65 |
+
sex = value.split(': ')[1].upper()
|
66 |
+
if sex == 'F':
|
67 |
+
return 0
|
68 |
+
elif sex == 'M':
|
69 |
+
return 1
|
70 |
+
return None
|
71 |
+
|
72 |
+
# Save initial filtering results
|
73 |
+
validate_and_save_cohort_info(is_final=False,
|
74 |
+
cohort=cohort,
|
75 |
+
info_path=json_path,
|
76 |
+
is_gene_available=is_gene_available,
|
77 |
+
is_trait_available=True)
|
78 |
+
|
79 |
+
# Extract clinical features
|
80 |
+
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
|
81 |
+
trait=trait,
|
82 |
+
trait_row=trait_row,
|
83 |
+
convert_trait=convert_trait,
|
84 |
+
age_row=age_row,
|
85 |
+
convert_age=convert_age,
|
86 |
+
gender_row=gender_row,
|
87 |
+
convert_gender=convert_gender)
|
88 |
+
|
89 |
+
# Preview and save clinical data
|
90 |
+
preview_df(clinical_features)
|
91 |
+
clinical_features.to_csv(out_clinical_data_file)
|
92 |
+
# Extract gene expression data from matrix file
|
93 |
+
gene_data = get_genetic_data(matrix_file)
|
94 |
+
|
95 |
+
# Print first 20 row IDs and shape of data to help debug
|
96 |
+
print("Shape of gene expression data:", gene_data.shape)
|
97 |
+
print("\nFirst few rows of data:")
|
98 |
+
print(gene_data.head())
|
99 |
+
print("\nFirst 20 gene/probe identifiers:")
|
100 |
+
print(gene_data.index[:20])
|
101 |
+
|
102 |
+
# Inspect a snippet of raw file to verify identifier format
|
103 |
+
import gzip
|
104 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
105 |
+
lines = []
|
106 |
+
for i, line in enumerate(f):
|
107 |
+
if "!series_matrix_table_begin" in line:
|
108 |
+
# Get the next 5 lines after the marker
|
109 |
+
for _ in range(5):
|
110 |
+
lines.append(next(f).strip())
|
111 |
+
break
|
112 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
113 |
+
for line in lines:
|
114 |
+
print(line)
|
115 |
+
# The identifiers start with "ILMN_" which indicates they are Illumina probe IDs
|
116 |
+
# These are not standard human gene symbols and will need to be mapped
|
117 |
+
requires_gene_mapping = True
|
118 |
+
# Get file paths using library function
|
119 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
120 |
+
|
121 |
+
# Extract gene annotation from SOFT file
|
122 |
+
gene_annotation = get_gene_annotation(soft_file)
|
123 |
+
|
124 |
+
# Preview gene annotation data
|
125 |
+
print("Gene annotation columns and example values:")
|
126 |
+
print(preview_df(gene_annotation))
|
127 |
+
# Get gene mapping based on 'ID' (probe identifier) and 'Symbol' (gene symbol)
|
128 |
+
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
129 |
+
|
130 |
+
# Apply gene mapping to convert probe-level measurements to gene-level measurements
|
131 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping)
|
132 |
+
|
133 |
+
# Normalize gene symbols to handle synonyms
|
134 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
135 |
+
# 1. Normalize gene symbols and save normalized gene data
|
136 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
137 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
138 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
139 |
+
gene_data.to_csv(out_gene_data_file)
|
140 |
+
|
141 |
+
# 2. Link clinical and genetic data
|
142 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
143 |
+
|
144 |
+
# 3. Handle missing values
|
145 |
+
linked_data = handle_missing_values(linked_data, trait)
|
146 |
+
|
147 |
+
# 4. Check for biased features and remove them if needed
|
148 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
149 |
+
|
150 |
+
# 5. Validate and save cohort info
|
151 |
+
is_usable = validate_and_save_cohort_info(
|
152 |
+
is_final=True,
|
153 |
+
cohort=cohort,
|
154 |
+
info_path=json_path,
|
155 |
+
is_gene_available=True,
|
156 |
+
is_trait_available=True,
|
157 |
+
is_biased=is_biased,
|
158 |
+
df=linked_data,
|
159 |
+
note="Clinical trial studying EGFR amplification in glioblastoma and response to gefitinib"
|
160 |
+
)
|
161 |
+
|
162 |
+
# 6. Save linked data if usable
|
163 |
+
if is_usable:
|
164 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
165 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Glioblastoma/code/GSE175700.py
ADDED
@@ -0,0 +1,124 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE175700"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE175700"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE175700.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE175700.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE175700.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# Gene data availability
|
37 |
+
# Yes - the dataset contains microarray data for gene expression analysis
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# Clinical feature keys and conversion functions
|
41 |
+
trait_row = None # All samples are U87 cell lines, no trait variation
|
42 |
+
age_row = None # Age not available for cell line data
|
43 |
+
gender_row = None # All samples are male cell line, no gender variation
|
44 |
+
|
45 |
+
# Since no clinical features are available with variation, we don't need conversion functions
|
46 |
+
def convert_trait(x):
|
47 |
+
return None
|
48 |
+
|
49 |
+
def convert_age(x):
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_gender(x):
|
53 |
+
return None
|
54 |
+
|
55 |
+
# Save metadata
|
56 |
+
validate_and_save_cohort_info(is_final=False,
|
57 |
+
cohort=cohort,
|
58 |
+
info_path=json_path,
|
59 |
+
is_gene_available=is_gene_available,
|
60 |
+
is_trait_available=False) # trait_row is None so trait data unavailable
|
61 |
+
|
62 |
+
# Skip clinical feature extraction since no trait data available
|
63 |
+
# Extract gene expression data from matrix file
|
64 |
+
gene_data = get_genetic_data(matrix_file)
|
65 |
+
|
66 |
+
# Print first 20 row IDs and shape of data to help debug
|
67 |
+
print("Shape of gene expression data:", gene_data.shape)
|
68 |
+
print("\nFirst few rows of data:")
|
69 |
+
print(gene_data.head())
|
70 |
+
print("\nFirst 20 gene/probe identifiers:")
|
71 |
+
print(gene_data.index[:20])
|
72 |
+
|
73 |
+
# Inspect a snippet of raw file to verify identifier format
|
74 |
+
import gzip
|
75 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
76 |
+
lines = []
|
77 |
+
for i, line in enumerate(f):
|
78 |
+
if "!series_matrix_table_begin" in line:
|
79 |
+
# Get the next 5 lines after the marker
|
80 |
+
for _ in range(5):
|
81 |
+
lines.append(next(f).strip())
|
82 |
+
break
|
83 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
84 |
+
for line in lines:
|
85 |
+
print(line)
|
86 |
+
# Looking at the identifiers starting with "AFFX-", these are Affymetrix probe IDs
|
87 |
+
# They need to be mapped to standard human gene symbols
|
88 |
+
requires_gene_mapping = True
|
89 |
+
# Get file paths using library function
|
90 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
91 |
+
|
92 |
+
# Extract gene annotation from SOFT file
|
93 |
+
gene_annotation = get_gene_annotation(soft_file)
|
94 |
+
|
95 |
+
# Preview gene annotation data
|
96 |
+
print("Gene annotation columns and example values:")
|
97 |
+
print(preview_df(gene_annotation))
|
98 |
+
# Get the mapping between probe IDs and gene symbols
|
99 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='gene_assignment')
|
100 |
+
|
101 |
+
# Apply the mapping to convert probe-level to gene-level expression
|
102 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
103 |
+
|
104 |
+
# Print dimensions to verify mapping result
|
105 |
+
print("\nShape of gene expression data after mapping:", gene_data.shape)
|
106 |
+
print("\nFirst few rows after mapping:")
|
107 |
+
print(gene_data.head())
|
108 |
+
# 1. Normalize gene symbols and save normalized gene data
|
109 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
110 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
111 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
112 |
+
gene_data.to_csv(out_gene_data_file)
|
113 |
+
|
114 |
+
# Update final validation info with gene_data as df and is_biased=True
|
115 |
+
is_usable = validate_and_save_cohort_info(
|
116 |
+
is_final=True,
|
117 |
+
cohort=cohort,
|
118 |
+
info_path=json_path,
|
119 |
+
is_gene_available=True,
|
120 |
+
is_trait_available=False,
|
121 |
+
is_biased=True, # No trait variation means completely biased
|
122 |
+
df=gene_data, # Pass gene_data as df
|
123 |
+
note="Cell line study with no trait variation - all samples are U87 cell line"
|
124 |
+
)
|
p3/preprocess/Glioblastoma/code/GSE178236.py
ADDED
@@ -0,0 +1,177 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE178236"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE178236"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE178236.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE178236.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE178236.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Based on background info mentioning "gene expression analysis" and "gene expression profile"
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Data Availability
|
42 |
+
trait_row = 5 # IDH status can indicate glioblastoma subtype
|
43 |
+
age_row = 2 # Age information available
|
44 |
+
gender_row = 1 # Gender information available
|
45 |
+
|
46 |
+
# 2.2 Data Type Conversion Functions
|
47 |
+
def convert_trait(x):
|
48 |
+
if not isinstance(x, str):
|
49 |
+
return None
|
50 |
+
value = x.split(': ')[-1].lower()
|
51 |
+
# Convert IDH status to binary: 1 for wild-type (wt), 0 for mutant (mut)
|
52 |
+
if 'wt' in value:
|
53 |
+
return 1
|
54 |
+
elif 'mut' in value:
|
55 |
+
return 0
|
56 |
+
return None
|
57 |
+
|
58 |
+
def convert_age(x):
|
59 |
+
if not isinstance(x, str):
|
60 |
+
return None
|
61 |
+
try:
|
62 |
+
# Extract numeric age value after colon
|
63 |
+
age = int(x.split(': ')[-1])
|
64 |
+
return age
|
65 |
+
except:
|
66 |
+
return None
|
67 |
+
|
68 |
+
def convert_gender(x):
|
69 |
+
if not isinstance(x, str):
|
70 |
+
return None
|
71 |
+
value = x.split(': ')[-1].lower()
|
72 |
+
if 'female' in value:
|
73 |
+
return 0
|
74 |
+
elif 'male' in value:
|
75 |
+
return 1
|
76 |
+
return None
|
77 |
+
|
78 |
+
# 3. Save Metadata
|
79 |
+
validate_and_save_cohort_info(is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=trait_row is not None)
|
84 |
+
|
85 |
+
# 4. Clinical Feature Extraction
|
86 |
+
# Since trait_row is not None, extract clinical features
|
87 |
+
clinical_features = geo_select_clinical_features(
|
88 |
+
clinical_df=clinical_data,
|
89 |
+
trait=trait,
|
90 |
+
trait_row=trait_row,
|
91 |
+
convert_trait=convert_trait,
|
92 |
+
age_row=age_row,
|
93 |
+
convert_age=convert_age,
|
94 |
+
gender_row=gender_row,
|
95 |
+
convert_gender=convert_gender
|
96 |
+
)
|
97 |
+
|
98 |
+
print("\nPreview of extracted clinical features:")
|
99 |
+
print(preview_df(clinical_features))
|
100 |
+
|
101 |
+
# Save clinical data
|
102 |
+
clinical_features.to_csv(out_clinical_data_file)
|
103 |
+
# Extract gene expression data from matrix file
|
104 |
+
gene_data = get_genetic_data(matrix_file)
|
105 |
+
|
106 |
+
# Print first 20 row IDs and shape of data to help debug
|
107 |
+
print("Shape of gene expression data:", gene_data.shape)
|
108 |
+
print("\nFirst few rows of data:")
|
109 |
+
print(gene_data.head())
|
110 |
+
print("\nFirst 20 gene/probe identifiers:")
|
111 |
+
print(gene_data.index[:20])
|
112 |
+
|
113 |
+
# Inspect a snippet of raw file to verify identifier format
|
114 |
+
import gzip
|
115 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
116 |
+
lines = []
|
117 |
+
for i, line in enumerate(f):
|
118 |
+
if "!series_matrix_table_begin" in line:
|
119 |
+
# Get the next 5 lines after the marker
|
120 |
+
for _ in range(5):
|
121 |
+
lines.append(next(f).strip())
|
122 |
+
break
|
123 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
124 |
+
for line in lines:
|
125 |
+
print(line)
|
126 |
+
# Observe the identifiers start with "ILMN_" - these are Illumina probe IDs, not gene symbols
|
127 |
+
requires_gene_mapping = True
|
128 |
+
# Get file paths using library function
|
129 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
130 |
+
|
131 |
+
# Extract gene annotation from SOFT file
|
132 |
+
gene_annotation = get_gene_annotation(soft_file)
|
133 |
+
|
134 |
+
# Preview gene annotation data
|
135 |
+
print("Gene annotation columns and example values:")
|
136 |
+
print(preview_df(gene_annotation))
|
137 |
+
# Get mapping between probe IDs and gene symbols
|
138 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
139 |
+
|
140 |
+
# Apply gene mapping to convert probe-level measurements to gene expression data
|
141 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
142 |
+
|
143 |
+
# Preview results
|
144 |
+
print("\nShape of gene expression data after mapping:", gene_data.shape)
|
145 |
+
print("\nFirst few rows of mapped gene expression data:")
|
146 |
+
print(gene_data.head())
|
147 |
+
# 1. Normalize gene symbols and save normalized gene data
|
148 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
149 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
150 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
151 |
+
gene_data.to_csv(out_gene_data_file)
|
152 |
+
|
153 |
+
# 2. Link clinical and genetic data
|
154 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
155 |
+
|
156 |
+
# 3. Handle missing values
|
157 |
+
linked_data = handle_missing_values(linked_data, trait)
|
158 |
+
|
159 |
+
# 4. Check for biased features and remove them if needed
|
160 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
161 |
+
|
162 |
+
# 5. Validate and save cohort info
|
163 |
+
is_usable = validate_and_save_cohort_info(
|
164 |
+
is_final=True,
|
165 |
+
cohort=cohort,
|
166 |
+
info_path=json_path,
|
167 |
+
is_gene_available=True,
|
168 |
+
is_trait_available=True,
|
169 |
+
is_biased=is_biased,
|
170 |
+
df=linked_data,
|
171 |
+
note="Clinical trial studying EGFR amplification in glioblastoma and response to gefitinib"
|
172 |
+
)
|
173 |
+
|
174 |
+
# 6. Save linked data if usable
|
175 |
+
if is_usable:
|
176 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
177 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Glioblastoma/code/GSE226976.py
ADDED
@@ -0,0 +1,146 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE226976"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE226976"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE226976.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE226976.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE226976.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# From series title and summary, this is gene expression data for glioblastoma samples
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
# Trait data (recurrent glioma) is available in row 0
|
42 |
+
trait_row = 0
|
43 |
+
|
44 |
+
# Age and gender not available in sample characteristics
|
45 |
+
age_row = None
|
46 |
+
gender_row = None
|
47 |
+
|
48 |
+
# 2.2 Data Type Conversion Functions
|
49 |
+
def convert_trait(x):
|
50 |
+
if pd.isna(x):
|
51 |
+
return None
|
52 |
+
# Extract value after colon
|
53 |
+
value = x.split(':')[1].strip().lower()
|
54 |
+
# Convert to binary - sample is recurrent glioma
|
55 |
+
if 'recurrent glioma' in value:
|
56 |
+
return 1
|
57 |
+
else:
|
58 |
+
return None
|
59 |
+
|
60 |
+
convert_age = None
|
61 |
+
convert_gender = None
|
62 |
+
|
63 |
+
# 3. Save metadata
|
64 |
+
validate_and_save_cohort_info(
|
65 |
+
is_final=False,
|
66 |
+
cohort=cohort,
|
67 |
+
info_path=json_path,
|
68 |
+
is_gene_available=is_gene_available,
|
69 |
+
is_trait_available=(trait_row is not None)
|
70 |
+
)
|
71 |
+
|
72 |
+
# 4. Extract clinical features since trait_row is not None
|
73 |
+
clinical_features = geo_select_clinical_features(
|
74 |
+
clinical_df=clinical_data,
|
75 |
+
trait=trait,
|
76 |
+
trait_row=trait_row,
|
77 |
+
convert_trait=convert_trait,
|
78 |
+
age_row=age_row,
|
79 |
+
convert_age=convert_age,
|
80 |
+
gender_row=gender_row,
|
81 |
+
convert_gender=convert_gender
|
82 |
+
)
|
83 |
+
|
84 |
+
# Preview and save clinical features
|
85 |
+
print("Clinical features preview:")
|
86 |
+
print(preview_df(clinical_features))
|
87 |
+
|
88 |
+
clinical_features.to_csv(out_clinical_data_file)
|
89 |
+
# Extract gene expression data from matrix file
|
90 |
+
gene_data = get_genetic_data(matrix_file)
|
91 |
+
|
92 |
+
# Print first 20 row IDs and shape of data to help debug
|
93 |
+
print("Shape of gene expression data:", gene_data.shape)
|
94 |
+
print("\nFirst few rows of data:")
|
95 |
+
print(gene_data.head())
|
96 |
+
print("\nFirst 20 gene/probe identifiers:")
|
97 |
+
print(gene_data.index[:20])
|
98 |
+
|
99 |
+
# Inspect a snippet of raw file to verify identifier format
|
100 |
+
import gzip
|
101 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
102 |
+
lines = []
|
103 |
+
for i, line in enumerate(f):
|
104 |
+
if "!series_matrix_table_begin" in line:
|
105 |
+
# Get the next 5 lines after the marker
|
106 |
+
for _ in range(5):
|
107 |
+
lines.append(next(f).strip())
|
108 |
+
break
|
109 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
110 |
+
for line in lines:
|
111 |
+
print(line)
|
112 |
+
# Looking at the first 20 gene identifiers, they appear to be valid HGNC gene symbols
|
113 |
+
# Examples like A2M, ABCF1, ACVR1C, ADAM12, ADGRE1 etc. are all recognized human gene symbols
|
114 |
+
# No mapping needed since the data already uses standard gene symbols
|
115 |
+
requires_gene_mapping = False
|
116 |
+
# 1. Normalize gene symbols and save normalized gene data
|
117 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
118 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
119 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
120 |
+
gene_data.to_csv(out_gene_data_file)
|
121 |
+
|
122 |
+
# 2. Link clinical and genetic data
|
123 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
124 |
+
|
125 |
+
# 3. Handle missing values
|
126 |
+
linked_data = handle_missing_values(linked_data, trait)
|
127 |
+
|
128 |
+
# 4. Check for biased features and remove them if needed
|
129 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
130 |
+
|
131 |
+
# 5. Validate and save cohort info
|
132 |
+
is_usable = validate_and_save_cohort_info(
|
133 |
+
is_final=True,
|
134 |
+
cohort=cohort,
|
135 |
+
info_path=json_path,
|
136 |
+
is_gene_available=True,
|
137 |
+
is_trait_available=True,
|
138 |
+
is_biased=is_biased,
|
139 |
+
df=linked_data,
|
140 |
+
note="Clinical trial studying EGFR amplification in glioblastoma and response to gefitinib"
|
141 |
+
)
|
142 |
+
|
143 |
+
# 6. Save linked data if usable
|
144 |
+
if is_usable:
|
145 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
146 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Glioblastoma/code/GSE249289.py
ADDED
@@ -0,0 +1,180 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE249289"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE249289"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE249289.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE249289.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE249289.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene expression data availability check
|
37 |
+
is_gene_available = True # Based on series title and design, this is gene expression data
|
38 |
+
|
39 |
+
# 2. Data availability and conversion functions
|
40 |
+
trait_row = None # No direct disease status as all samples are glioblastoma
|
41 |
+
age_row = 2 # Age information is in row 2
|
42 |
+
gender_row = 1 # Gender information is in row 1
|
43 |
+
|
44 |
+
def convert_age(x):
|
45 |
+
try:
|
46 |
+
# Extract numeric value after colon
|
47 |
+
age = int(x.split(': ')[1])
|
48 |
+
return age
|
49 |
+
except:
|
50 |
+
return None
|
51 |
+
|
52 |
+
def convert_gender(x):
|
53 |
+
try:
|
54 |
+
# Extract value after colon and convert to binary
|
55 |
+
gender = x.split(': ')[1].lower()
|
56 |
+
if gender == 'female':
|
57 |
+
return 0
|
58 |
+
elif gender == 'male':
|
59 |
+
return 1
|
60 |
+
return None
|
61 |
+
except:
|
62 |
+
return None
|
63 |
+
|
64 |
+
def convert_trait(x):
|
65 |
+
# Not used as trait data not available
|
66 |
+
return None
|
67 |
+
|
68 |
+
# 3. Save metadata
|
69 |
+
is_trait_available = trait_row is not None
|
70 |
+
validate_and_save_cohort_info(is_final=False,
|
71 |
+
cohort=cohort,
|
72 |
+
info_path=json_path,
|
73 |
+
is_gene_available=is_gene_available,
|
74 |
+
is_trait_available=is_trait_available)
|
75 |
+
|
76 |
+
# 4. Extract clinical features if available
|
77 |
+
# Skip this step since trait_row is None
|
78 |
+
# Extract gene expression data from matrix file
|
79 |
+
gene_data = get_genetic_data(matrix_file)
|
80 |
+
|
81 |
+
# Print first 20 row IDs and shape of data to help debug
|
82 |
+
print("Shape of gene expression data:", gene_data.shape)
|
83 |
+
print("\nFirst few rows of data:")
|
84 |
+
print(gene_data.head())
|
85 |
+
print("\nFirst 20 gene/probe identifiers:")
|
86 |
+
print(gene_data.index[:20])
|
87 |
+
|
88 |
+
# Inspect a snippet of raw file to verify identifier format
|
89 |
+
import gzip
|
90 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
91 |
+
lines = []
|
92 |
+
for i, line in enumerate(f):
|
93 |
+
if "!series_matrix_table_begin" in line:
|
94 |
+
# Get the next 5 lines after the marker
|
95 |
+
for _ in range(5):
|
96 |
+
lines.append(next(f).strip())
|
97 |
+
break
|
98 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
99 |
+
for line in lines:
|
100 |
+
print(line)
|
101 |
+
# The identifiers start with "ILMN_" which indicates they are Illumina probe IDs
|
102 |
+
# These need to be mapped to official human gene symbols for analysis
|
103 |
+
requires_gene_mapping = True
|
104 |
+
# Get file paths using library function
|
105 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
106 |
+
|
107 |
+
# Extract gene annotation from SOFT file
|
108 |
+
gene_annotation = get_gene_annotation(soft_file)
|
109 |
+
|
110 |
+
# Preview gene annotation data
|
111 |
+
print("Gene annotation columns and example values:")
|
112 |
+
print(preview_df(gene_annotation))
|
113 |
+
# Get mapping dataframe with ID and Symbol columns from gene annotation
|
114 |
+
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
|
115 |
+
|
116 |
+
# Apply mapping to convert probe-level measurements to gene expression data
|
117 |
+
gene_data = apply_gene_mapping(gene_data, gene_mapping)
|
118 |
+
|
119 |
+
# Print shape and preview to verify the mapping result
|
120 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
121 |
+
print("\nFirst few rows of mapped data:")
|
122 |
+
print(gene_data.head())
|
123 |
+
# 1. Normalize gene symbols and save normalized gene data
|
124 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
125 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
126 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
127 |
+
gene_data.to_csv(out_gene_data_file)
|
128 |
+
|
129 |
+
# 2. Extract clinical features and link with genetic data
|
130 |
+
clinical_features = geo_select_clinical_features(
|
131 |
+
clinical_data,
|
132 |
+
trait=trait,
|
133 |
+
trait_row=None,
|
134 |
+
age_row=2,
|
135 |
+
convert_age=convert_age,
|
136 |
+
gender_row=1,
|
137 |
+
convert_gender=convert_gender
|
138 |
+
)
|
139 |
+
|
140 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
141 |
+
|
142 |
+
# 3. Handle missing values
|
143 |
+
linked_data = handle_missing_values(linked_data, "Age") # Use Age as primary feature since trait is not available
|
144 |
+
|
145 |
+
# 4. Check for biased features and remove them if needed
|
146 |
+
is_biased = False # Only demographic features, no trait to be biased
|
147 |
+
linked_data = judge_and_remove_biased_features(linked_data, "Age")[1] # Use Age since trait is not available
|
148 |
+
|
149 |
+
# 5. Validate and save cohort info
|
150 |
+
validate_and_save_cohort_info(
|
151 |
+
is_final=True,
|
152 |
+
cohort=cohort,
|
153 |
+
info_path=json_path,
|
154 |
+
is_gene_available=True,
|
155 |
+
is_trait_available=False,
|
156 |
+
is_biased=is_biased,
|
157 |
+
df=linked_data,
|
158 |
+
note="Contains gene expression data with age and gender information, but no trait data for analysis"
|
159 |
+
)
|
160 |
+
|
161 |
+
# 6. Save linked data with demographic features
|
162 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
163 |
+
linked_data.to_csv(out_data_file)
|
164 |
+
# 1. Normalize gene symbols and save normalized gene data
|
165 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
166 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
167 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
168 |
+
gene_data.to_csv(out_gene_data_file)
|
169 |
+
|
170 |
+
# 2. Record metadata about dataset's unavailability for trait analysis
|
171 |
+
validate_and_save_cohort_info(
|
172 |
+
is_final=True,
|
173 |
+
cohort=cohort,
|
174 |
+
info_path=json_path,
|
175 |
+
is_gene_available=True,
|
176 |
+
is_trait_available=False,
|
177 |
+
is_biased=None,
|
178 |
+
df=None,
|
179 |
+
note="Contains gene expression data from glioblastoma tumorspheres but no control samples for trait analysis"
|
180 |
+
)
|
p3/preprocess/Glioblastoma/code/GSE279426.py
ADDED
@@ -0,0 +1,159 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE279426"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE279426"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE279426.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE279426.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE279426.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# Yes, this is gene expression data based on the background info
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2.1 Data Availability
|
41 |
+
|
42 |
+
# For trait (Glioblastoma): EGFR amplification status is available and relevant
|
43 |
+
trait_row = 4 # egfr_amplification: A0/A1
|
44 |
+
|
45 |
+
# Age and gender are not available in the data
|
46 |
+
age_row = None
|
47 |
+
gender_row = None
|
48 |
+
|
49 |
+
# 2.2 Data Type Conversion Functions
|
50 |
+
def convert_trait(value: str) -> int:
|
51 |
+
"""Convert EGFR amplification status to binary"""
|
52 |
+
if pd.isna(value) or value is None:
|
53 |
+
return None
|
54 |
+
value = value.split(': ')[-1].strip()
|
55 |
+
if value == 'A0': # Not amplified
|
56 |
+
return 0
|
57 |
+
elif value == 'A1': # Amplified
|
58 |
+
return 1
|
59 |
+
return None
|
60 |
+
|
61 |
+
def convert_age(value: str) -> float:
|
62 |
+
"""Placeholder function since age data not available"""
|
63 |
+
return None
|
64 |
+
|
65 |
+
def convert_gender(value: str) -> int:
|
66 |
+
"""Placeholder function since gender data not available"""
|
67 |
+
return None
|
68 |
+
|
69 |
+
# 3. Save metadata and do initial filtering
|
70 |
+
is_trait_available = trait_row is not None
|
71 |
+
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
|
72 |
+
is_gene_available=is_gene_available,
|
73 |
+
is_trait_available=is_trait_available)
|
74 |
+
|
75 |
+
# 4. Clinical Feature Extraction
|
76 |
+
if trait_row is not None:
|
77 |
+
clinical_features = geo_select_clinical_features(clinical_data, trait, trait_row, convert_trait,
|
78 |
+
age_row, convert_age,
|
79 |
+
gender_row, convert_gender)
|
80 |
+
print("Preview of extracted clinical features:")
|
81 |
+
print(preview_df(clinical_features))
|
82 |
+
clinical_features.to_csv(out_clinical_data_file)
|
83 |
+
# Extract gene expression data from matrix file
|
84 |
+
gene_data = get_genetic_data(matrix_file)
|
85 |
+
|
86 |
+
# Print first 20 row IDs and shape of data to help debug
|
87 |
+
print("Shape of gene expression data:", gene_data.shape)
|
88 |
+
print("\nFirst few rows of data:")
|
89 |
+
print(gene_data.head())
|
90 |
+
print("\nFirst 20 gene/probe identifiers:")
|
91 |
+
print(gene_data.index[:20])
|
92 |
+
|
93 |
+
# Inspect a snippet of raw file to verify identifier format
|
94 |
+
import gzip
|
95 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
96 |
+
lines = []
|
97 |
+
for i, line in enumerate(f):
|
98 |
+
if "!series_matrix_table_begin" in line:
|
99 |
+
# Get the next 5 lines after the marker
|
100 |
+
for _ in range(5):
|
101 |
+
lines.append(next(f).strip())
|
102 |
+
break
|
103 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
104 |
+
for line in lines:
|
105 |
+
print(line)
|
106 |
+
# Analyzing the gene identifiers
|
107 |
+
# The identifiers (e.g. "1007_s_at", "1053_at") appear to be Affymetrix probe IDs
|
108 |
+
# These need to be mapped to standard human gene symbols for analysis
|
109 |
+
requires_gene_mapping = True
|
110 |
+
# Get file paths using library function
|
111 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
112 |
+
|
113 |
+
# Extract gene annotation from SOFT file
|
114 |
+
gene_annotation = get_gene_annotation(soft_file)
|
115 |
+
|
116 |
+
# Preview gene annotation data
|
117 |
+
print("Gene annotation columns and example values:")
|
118 |
+
print(preview_df(gene_annotation))
|
119 |
+
# Extract gene mapping from annotation data
|
120 |
+
mapping_df = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
|
121 |
+
|
122 |
+
# Apply gene mapping to convert probe-level data to gene expression data
|
123 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
124 |
+
|
125 |
+
# Preview result to verify
|
126 |
+
print("Shape of gene expression data after mapping:", gene_data.shape)
|
127 |
+
print("\nFirst few rows of mapped data:")
|
128 |
+
print(gene_data.head())
|
129 |
+
# 1. Normalize gene symbols and save normalized gene data
|
130 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
131 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
132 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
133 |
+
gene_data.to_csv(out_gene_data_file)
|
134 |
+
|
135 |
+
# 2. Link clinical and genetic data
|
136 |
+
linked_data = geo_link_clinical_genetic_data(clinical_features, gene_data)
|
137 |
+
|
138 |
+
# 3. Handle missing values
|
139 |
+
linked_data = handle_missing_values(linked_data, trait)
|
140 |
+
|
141 |
+
# 4. Check for biased features and remove them if needed
|
142 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
143 |
+
|
144 |
+
# 5. Validate and save cohort info
|
145 |
+
is_usable = validate_and_save_cohort_info(
|
146 |
+
is_final=True,
|
147 |
+
cohort=cohort,
|
148 |
+
info_path=json_path,
|
149 |
+
is_gene_available=True,
|
150 |
+
is_trait_available=True,
|
151 |
+
is_biased=is_biased,
|
152 |
+
df=linked_data,
|
153 |
+
note="Clinical trial studying EGFR amplification in glioblastoma and response to gefitinib"
|
154 |
+
)
|
155 |
+
|
156 |
+
# 6. Save linked data if usable
|
157 |
+
if is_usable:
|
158 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
159 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Glioblastoma/code/GSE39144.py
ADDED
@@ -0,0 +1,188 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
cohort = "GSE39144"
|
7 |
+
|
8 |
+
# Input paths
|
9 |
+
in_trait_dir = "../DATA/GEO/Glioblastoma"
|
10 |
+
in_cohort_dir = "../DATA/GEO/Glioblastoma/GSE39144"
|
11 |
+
|
12 |
+
# Output paths
|
13 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/GSE39144.csv"
|
14 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/GSE39144.csv"
|
15 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/GSE39144.csv"
|
16 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
17 |
+
|
18 |
+
# Get file paths
|
19 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
20 |
+
|
21 |
+
# Extract background info and clinical data
|
22 |
+
background_info, clinical_data = get_background_and_clinical_data(matrix_file)
|
23 |
+
|
24 |
+
# Get unique values per clinical feature
|
25 |
+
sample_characteristics = get_unique_values_by_row(clinical_data)
|
26 |
+
|
27 |
+
# Print background info
|
28 |
+
print("Dataset Background Information:")
|
29 |
+
print(f"{background_info}\n")
|
30 |
+
|
31 |
+
# Print sample characteristics
|
32 |
+
print("Sample Characteristics:")
|
33 |
+
for feature, values in sample_characteristics.items():
|
34 |
+
print(f"Feature: {feature}")
|
35 |
+
print(f"Values: {values}\n")
|
36 |
+
# 1. Gene Expression Data Availability
|
37 |
+
# GeneChip Human Genome U133 Plus 2.0 Array was used, indicating gene expression data
|
38 |
+
is_gene_available = True
|
39 |
+
|
40 |
+
# 2. Variable Availability and Data Type Conversion
|
41 |
+
# 2.1 Data Availability
|
42 |
+
|
43 |
+
# For trait: Feature 0 contains "cell type: glioma-initiating cells" which indicates glioblastoma samples
|
44 |
+
trait_row = 0
|
45 |
+
|
46 |
+
# Age: No age information available in sample characteristics
|
47 |
+
age_row = None
|
48 |
+
|
49 |
+
# Gender: Feature 2 contains gender information
|
50 |
+
gender_row = 2
|
51 |
+
|
52 |
+
# 2.2 Data Type Conversion Functions
|
53 |
+
def convert_trait(value: str) -> int:
|
54 |
+
# Convert glioma vs non-glioma
|
55 |
+
if "glioma-initiating cells" in value.lower():
|
56 |
+
return 1
|
57 |
+
return 0
|
58 |
+
|
59 |
+
def convert_age(value: str) -> float:
|
60 |
+
# Not used but defined for completeness
|
61 |
+
return None
|
62 |
+
|
63 |
+
def convert_gender(value: str) -> int:
|
64 |
+
# Extract value after colon and convert to binary
|
65 |
+
if ":" in value:
|
66 |
+
gender = value.split(":")[1].strip().lower()
|
67 |
+
if gender == "female":
|
68 |
+
return 0
|
69 |
+
elif gender == "male":
|
70 |
+
return 1
|
71 |
+
elif "pooled female" in gender:
|
72 |
+
return 0
|
73 |
+
elif "pooled male" in gender:
|
74 |
+
return 1
|
75 |
+
return None
|
76 |
+
|
77 |
+
# 3. Save Metadata
|
78 |
+
validate_and_save_cohort_info(
|
79 |
+
is_final=False,
|
80 |
+
cohort=cohort,
|
81 |
+
info_path=json_path,
|
82 |
+
is_gene_available=is_gene_available,
|
83 |
+
is_trait_available=(trait_row is not None)
|
84 |
+
)
|
85 |
+
|
86 |
+
# 4. Clinical Feature Extraction
|
87 |
+
# Extract clinical features since trait_row is not None
|
88 |
+
clinical_df = geo_select_clinical_features(
|
89 |
+
clinical_df=clinical_data,
|
90 |
+
trait=trait,
|
91 |
+
trait_row=trait_row,
|
92 |
+
convert_trait=convert_trait,
|
93 |
+
age_row=age_row,
|
94 |
+
convert_age=convert_age,
|
95 |
+
gender_row=gender_row,
|
96 |
+
convert_gender=convert_gender
|
97 |
+
)
|
98 |
+
|
99 |
+
# Preview the extracted features
|
100 |
+
preview_result = preview_df(clinical_df)
|
101 |
+
print("Preview of clinical features:")
|
102 |
+
print(preview_result)
|
103 |
+
|
104 |
+
# Save clinical data
|
105 |
+
clinical_df.to_csv(out_clinical_data_file)
|
106 |
+
# Extract gene expression data from matrix file
|
107 |
+
gene_data = get_genetic_data(matrix_file)
|
108 |
+
|
109 |
+
# Print first 20 row IDs and shape of data to help debug
|
110 |
+
print("Shape of gene expression data:", gene_data.shape)
|
111 |
+
print("\nFirst few rows of data:")
|
112 |
+
print(gene_data.head())
|
113 |
+
print("\nFirst 20 gene/probe identifiers:")
|
114 |
+
print(gene_data.index[:20])
|
115 |
+
|
116 |
+
# Inspect a snippet of raw file to verify identifier format
|
117 |
+
import gzip
|
118 |
+
with gzip.open(matrix_file, 'rt', encoding='utf-8') as f:
|
119 |
+
lines = []
|
120 |
+
for i, line in enumerate(f):
|
121 |
+
if "!series_matrix_table_begin" in line:
|
122 |
+
# Get the next 5 lines after the marker
|
123 |
+
for _ in range(5):
|
124 |
+
lines.append(next(f).strip())
|
125 |
+
break
|
126 |
+
print("\nFirst few lines after matrix marker in raw file:")
|
127 |
+
for line in lines:
|
128 |
+
print(line)
|
129 |
+
# Examine the gene identifiers - these are Affymetrix probe IDs that require mapping to gene symbols
|
130 |
+
# Format: XXXXX_at, XXXXX_s_at, XXXXX_x_at etc.
|
131 |
+
# These are probe set IDs from Affymetrix arrays, not gene symbols
|
132 |
+
requires_gene_mapping = True
|
133 |
+
# Get file paths using library function
|
134 |
+
soft_file, matrix_file = geo_get_relevant_filepaths(in_cohort_dir)
|
135 |
+
|
136 |
+
# Extract gene annotation from SOFT file
|
137 |
+
gene_annotation = get_gene_annotation(soft_file)
|
138 |
+
|
139 |
+
# Preview gene annotation data
|
140 |
+
print("Gene annotation columns and example values:")
|
141 |
+
print(preview_df(gene_annotation))
|
142 |
+
# 1. Identify relevant columns from gene annotation
|
143 |
+
# 'ID' column matches probe IDs in gene expression data
|
144 |
+
# 'Gene Symbol' column contains the gene symbols
|
145 |
+
prob_col = 'ID'
|
146 |
+
gene_col = 'Gene Symbol'
|
147 |
+
|
148 |
+
# 2. Get mapping between probe IDs and gene symbols
|
149 |
+
mapping_df = get_gene_mapping(gene_annotation, prob_col, gene_col)
|
150 |
+
|
151 |
+
# 3. Apply mapping to convert probe-level data to gene-level data
|
152 |
+
gene_data = apply_gene_mapping(gene_data, mapping_df)
|
153 |
+
|
154 |
+
# Preview result
|
155 |
+
print("Shape of mapped gene expression data:", gene_data.shape)
|
156 |
+
print("\nFirst few rows of mapped data:")
|
157 |
+
print(gene_data.head())
|
158 |
+
# 1. Normalize gene symbols and save normalized gene data
|
159 |
+
gene_data.index = gene_data.index.str.replace('-mRNA', '')
|
160 |
+
gene_data = normalize_gene_symbols_in_index(gene_data)
|
161 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
162 |
+
gene_data.to_csv(out_gene_data_file)
|
163 |
+
|
164 |
+
# 2. Link clinical and genetic data
|
165 |
+
linked_data = geo_link_clinical_genetic_data(clinical_df, gene_data)
|
166 |
+
|
167 |
+
# 3. Handle missing values
|
168 |
+
linked_data = handle_missing_values(linked_data, trait)
|
169 |
+
|
170 |
+
# 4. Check for biased features and remove them if needed
|
171 |
+
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
172 |
+
|
173 |
+
# 5. Validate and save cohort info
|
174 |
+
is_usable = validate_and_save_cohort_info(
|
175 |
+
is_final=True,
|
176 |
+
cohort=cohort,
|
177 |
+
info_path=json_path,
|
178 |
+
is_gene_available=True,
|
179 |
+
is_trait_available=True,
|
180 |
+
is_biased=is_biased,
|
181 |
+
df=linked_data,
|
182 |
+
note="Gene expression data from hiPSCs, hESCs and differentiated cells, including glioblastoma cells"
|
183 |
+
)
|
184 |
+
|
185 |
+
# 6. Save linked data if usable
|
186 |
+
if is_usable:
|
187 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
188 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Glioblastoma/code/TCGA.py
ADDED
@@ -0,0 +1,97 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
# Path Configuration
|
2 |
+
from tools.preprocess import *
|
3 |
+
|
4 |
+
# Processing context
|
5 |
+
trait = "Glioblastoma"
|
6 |
+
|
7 |
+
# Input paths
|
8 |
+
tcga_root_dir = "../DATA/TCGA"
|
9 |
+
|
10 |
+
# Output paths
|
11 |
+
out_data_file = "./output/preprocess/3/Glioblastoma/TCGA.csv"
|
12 |
+
out_gene_data_file = "./output/preprocess/3/Glioblastoma/gene_data/TCGA.csv"
|
13 |
+
out_clinical_data_file = "./output/preprocess/3/Glioblastoma/clinical_data/TCGA.csv"
|
14 |
+
json_path = "./output/preprocess/3/Glioblastoma/cohort_info.json"
|
15 |
+
|
16 |
+
# 1. Select the relevant subdirectory for glioblastoma
|
17 |
+
subdirectory = 'TCGA_Glioblastoma_(GBM)'
|
18 |
+
cohort_dir = os.path.join(tcga_root_dir, subdirectory)
|
19 |
+
|
20 |
+
# 2. Get the file paths
|
21 |
+
clinical_file_path, genetic_file_path = tcga_get_relevant_filepaths(cohort_dir)
|
22 |
+
|
23 |
+
# 3. Load the data files
|
24 |
+
clinical_df = pd.read_csv(clinical_file_path, index_col=0, sep='\t')
|
25 |
+
genetic_df = pd.read_csv(genetic_file_path, index_col=0, sep='\t')
|
26 |
+
|
27 |
+
# 4. Print clinical data columns
|
28 |
+
print("Clinical data columns:")
|
29 |
+
print(clinical_df.columns.tolist())
|
30 |
+
# Define candidate columns for age and gender
|
31 |
+
candidate_age_cols = ['CDE_DxAge', 'age_at_initial_pathologic_diagnosis', 'days_to_birth']
|
32 |
+
candidate_gender_cols = ['gender']
|
33 |
+
|
34 |
+
# Preview age and gender columns from clinical data
|
35 |
+
age_cols_dict = clinical_df[candidate_age_cols].head(5).to_dict('list')
|
36 |
+
print(f"Age columns preview: {age_cols_dict}")
|
37 |
+
|
38 |
+
gender_cols_dict = clinical_df[candidate_gender_cols].head(5).to_dict('list')
|
39 |
+
print(f"Gender columns preview: {gender_cols_dict}")
|
40 |
+
# Analyze age columns
|
41 |
+
age_col = 'age_at_initial_pathologic_diagnosis' # Choose this as it provides direct age values in years
|
42 |
+
|
43 |
+
# Analyze gender columns
|
44 |
+
gender_col = 'gender' # Only one gender column available
|
45 |
+
|
46 |
+
# Print chosen columns
|
47 |
+
print(f"Chosen age column: {age_col}")
|
48 |
+
print(f"Chosen gender column: {gender_col}")
|
49 |
+
# 1. Extract and standardize clinical features
|
50 |
+
# Create trait labels from sample IDs (01-09: tumor=1, 10-19: normal=0)
|
51 |
+
clinical_features = tcga_select_clinical_features(
|
52 |
+
clinical_df,
|
53 |
+
trait=trait,
|
54 |
+
age_col='age_at_initial_pathologic_diagnosis',
|
55 |
+
gender_col='gender'
|
56 |
+
)
|
57 |
+
# Save clinical data
|
58 |
+
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
|
59 |
+
clinical_features.to_csv(out_clinical_data_file)
|
60 |
+
|
61 |
+
# 2. Normalize gene symbols and save
|
62 |
+
normalized_gene_df = normalize_gene_symbols_in_index(genetic_df)
|
63 |
+
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
|
64 |
+
normalized_gene_df.to_csv(out_gene_data_file)
|
65 |
+
|
66 |
+
# 3. Link clinical and genetic data on sample IDs
|
67 |
+
linked_data = pd.merge(
|
68 |
+
clinical_features,
|
69 |
+
normalized_gene_df.T,
|
70 |
+
left_index=True,
|
71 |
+
right_index=True,
|
72 |
+
how='inner'
|
73 |
+
)
|
74 |
+
|
75 |
+
# 4. Handle missing values systematically
|
76 |
+
linked_data = handle_missing_values(linked_data, trait)
|
77 |
+
|
78 |
+
# 5. Check for bias in trait and demographic features
|
79 |
+
trait_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
|
80 |
+
|
81 |
+
# 6. Validate data quality and save cohort info
|
82 |
+
note = "Contains molecular data from tumor and normal samples with patient demographics."
|
83 |
+
is_usable = validate_and_save_cohort_info(
|
84 |
+
is_final=True,
|
85 |
+
cohort="TCGA",
|
86 |
+
info_path=json_path,
|
87 |
+
is_gene_available=True,
|
88 |
+
is_trait_available=True,
|
89 |
+
is_biased=trait_biased,
|
90 |
+
df=linked_data,
|
91 |
+
note=note
|
92 |
+
)
|
93 |
+
|
94 |
+
# 7. Save linked data if usable
|
95 |
+
if is_usable:
|
96 |
+
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
|
97 |
+
linked_data.to_csv(out_data_file)
|
p3/preprocess/Glioblastoma/gene_data/GSE134470.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ba24674f901fdcc483785dd18b8239b22bc3a75e85a2fec50cc5b0e1b6fbd16d
|
3 |
+
size 21960028
|
p3/preprocess/Glioblastoma/gene_data/GSE148949.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:2b3b053d323f55d881c67cded230cd46ecbed8115f2109c1f264fd33992ccfe8
|
3 |
+
size 12311824
|
p3/preprocess/Glioblastoma/gene_data/GSE159000.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Glioblastoma/gene_data/GSE175700.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:6f2dfe914271f10264fd743ea3f6f4c4e442f6a119d03c7a1f15a4b24456c84d
|
3 |
+
size 14207713
|
p3/preprocess/Glioblastoma/gene_data/GSE178236.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9cb9c85cce7814f435afbf3c3183ab56c3b9c9558796a01af7a341b9b4d74b60
|
3 |
+
size 16314430
|
p3/preprocess/Glioblastoma/gene_data/GSE226976.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Glioblastoma/gene_data/GSE249289.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Glioblastoma/gene_data/GSE279426.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Glioblastoma/gene_data/GSE39144.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:ca8e547fab39366c1235367f25cf9a1dcc790d5f45a33b7ddf2e206991dc7b75
|
3 |
+
size 11323495
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE15820.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:f1fe367772062a079b48c1f43fb9a3111bbda4737e4ad36c32196eb93904f698
|
3 |
+
size 12945495
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE32962.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:1c39f2e7b86d5d4bcbff093218c2cd89b39592eb354acbcf2a8dd7e55ae38e53
|
3 |
+
size 11282644
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE33649.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8ec24c22f36b155d3d763de2a907f48f4cc579f67d061faf09e9dd620245a932
|
3 |
+
size 12458722
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE42002.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:8f3b847078ed22bfb662706b6bb465a2d781f5d7df13c530db72738d93d929b7
|
3 |
+
size 30057351
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE48801.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:107dd3ce82a7e500dcbc9fa16416ba9e54c6cb3ae859e6c638e267124fcfab0c
|
3 |
+
size 62735272
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE50012.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:13e5be0799926ff09044729020f0f30d5d5045301e69cf039128128a8c629024
|
3 |
+
size 20850626
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE57795.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:d131f713cb4ba47ea1d90397a46ad5d0ee96fdfa8bb1c641f3735690c1c6426e
|
3 |
+
size 12922651
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE58715.csv
ADDED
The diff for this file is too large to render.
See raw diff
|
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE65645.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:36ab6af2d92bb4cfbd1171a957deb908747938ec14a16da21f7ef5e1e9aaad1e
|
3 |
+
size 10919885
|
p3/preprocess/Glucocorticoid_Sensitivity/GSE66705.csv
ADDED
@@ -0,0 +1,3 @@
|
|
|
|
|
|
|
|
|
1 |
+
version https://git-lfs.github.com/spec/v1
|
2 |
+
oid sha256:9f244baedf43be9c9c286cc600df1f4ce5df3f0727083c3e8c2c671dabb870e5
|
3 |
+
size 27520522
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE15820.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM397450,GSM397451,GSM397452,GSM397453,GSM397454,GSM397455,GSM397456,GSM397457,GSM397458,GSM397459,GSM397460,GSM397461,GSM397462,GSM397463,GSM397464,GSM397465,GSM397466,GSM397467,GSM397468,GSM397469,GSM397470,GSM397471,GSM397472,GSM397473,GSM397474,GSM397475,GSM397476,GSM397477,GSM397478,GSM397479,GSM397480,GSM397481,GSM397482,GSM397483,GSM397484,GSM397485,GSM397486,GSM397487,GSM397488,GSM397489
|
2 |
+
Glucocorticoid_Sensitivity,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE32962.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM816393,GSM816394,GSM816395,GSM816396,GSM816397,GSM816398,GSM816399,GSM816400,GSM816401,GSM816402,GSM816403,GSM816404,GSM816405,GSM816406,GSM816407,GSM816408,GSM816409,GSM816410,GSM816411,GSM816412,GSM816413,GSM816414,GSM816415,GSM816416,GSM816417,GSM816418,GSM816419,GSM816420,GSM816421,GSM816422,GSM816423,GSM816424,GSM816425,GSM816426,GSM816427,GSM816428,GSM816429,GSM816430,GSM816431,GSM816432,GSM816433,GSM816434,GSM816435
|
2 |
+
Glucocorticoid_Sensitivity,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE33649.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM832137,GSM832138,GSM832139,GSM832140,GSM832141,GSM832142,GSM832143,GSM832144,GSM832145,GSM832146,GSM832147,GSM832148,GSM832149,GSM832150,GSM832151,GSM832152,GSM832153,GSM832154,GSM832155,GSM832156,GSM832157,GSM832158,GSM832159,GSM832160,GSM832161,GSM832162,GSM832163,GSM832164,GSM832165,GSM832166,GSM832167,GSM832168,GSM832169,GSM832170,GSM832171,GSM832172,GSM832173,GSM832174,GSM832175,GSM832176,GSM832177,GSM832178,GSM832179,GSM832180,GSM832181,GSM832182,GSM832183,GSM832184
|
2 |
+
Glucocorticoid_Sensitivity,89.43486,89.43486,89.43486,89.43486,95.88507,95.88507,95.88507,95.88507,95.22036,95.22036,95.22036,95.22036,92.86704,92.86704,92.86704,92.86704,93.71633,93.71633,93.71633,93.71633,96.76962,96.76962,96.76962,96.76962,88.55031,88.55031,88.55031,88.55031,90.09957,90.09957,90.09957,90.09957,94.17097,94.17097,94.17097,94.17097,86.97089,86.97089,86.97089,86.97089,98.34904,98.34904,98.34904,98.34904,91.14896,91.14896,91.14896,91.14896
|
3 |
+
Age,44.15342,44.15342,44.15342,44.15342,24.72329,24.72329,24.72329,24.72329,32.37808,32.37808,32.37808,32.37808,20.38082,20.38082,20.38082,20.38082,21.2411,21.2411,21.2411,21.2411,22.54247,22.54247,22.54247,22.54247,26.13973,26.13973,26.13973,26.13973,21.5616,21.5616,21.5616,21.5616,21.9863,21.9863,21.9863,21.9863,26.76712,26.76712,26.76712,26.76712,23.59452,23.59452,23.59452,23.59452,23.47945,23.47945,23.47945,23.47945
|
4 |
+
Gender,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE42002.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1030400,GSM1030401,GSM1030402,GSM1030403,GSM1030404,GSM1030405,GSM1030406,GSM1030407,GSM1030408,GSM1030409,GSM1030410,GSM1030411,GSM1030412,GSM1030413,GSM1030414,GSM1030415,GSM1030416,GSM1030417,GSM1030418,GSM1030419,GSM1030420,GSM1030421,GSM1030422,GSM1030423,GSM1030424,GSM1030425,GSM1030426,GSM1030427,GSM1030428,GSM1030429,GSM1030430,GSM1030431,GSM1030432,GSM1030433,GSM1030434,GSM1030435,GSM1030436,GSM1030437,GSM1030438,GSM1030439,GSM1030440,GSM1030441,GSM1030442,GSM1030443,GSM1030444,GSM1030445,GSM1030446,GSM1030447,GSM1030448,GSM1030449,GSM1030450,GSM1030451,GSM1030452,GSM1030453,GSM1030454,GSM1030455,GSM1030456,GSM1030457,GSM1030458,GSM1030459,GSM1030460,GSM1030461,GSM1030462,GSM1030463,GSM1030464,GSM1030465,GSM1030466,GSM1030467,GSM1030468,GSM1030469,GSM1030470,GSM1030471,GSM1030472,GSM1030473,GSM1030474,GSM1030475,GSM1030476,GSM1030477,GSM1030478,GSM1030479,GSM1030480,GSM1030481,GSM1030482,GSM1030483,GSM1030484,GSM1030485,GSM1030486,GSM1030487,GSM1030488,GSM1030489,GSM1030490,GSM1030491,GSM1030492,GSM1030493,GSM1030494,GSM1030495,GSM1030496,GSM1030497,GSM1030498,GSM1030499,GSM1030500,GSM1030501,GSM1030502,GSM1030503,GSM1030504,GSM1030505,GSM1030506,GSM1030507,GSM1030508,GSM1030509,GSM1030510,GSM1030511,GSM1030512,GSM1030513,GSM1030514,GSM1030515,GSM1030516,GSM1030517,GSM1030518,GSM1030519,GSM1030520,GSM1030521,GSM1030522,GSM1030523,GSM1030524,GSM1030525,GSM1030526,GSM1030527,GSM1030528
|
2 |
+
Glucocorticoid_Sensitivity,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,1.0,1.0,1.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE48801.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1184717,GSM1184718,GSM1184719,GSM1184720,GSM1184721,GSM1184722,GSM1184723,GSM1184724,GSM1184725,GSM1184726,GSM1184727,GSM1184728,GSM1184729,GSM1184730,GSM1184731,GSM1184732,GSM1184733,GSM1184734,GSM1184735,GSM1184736,GSM1184737,GSM1184738,GSM1184739,GSM1184740,GSM1184741,GSM1184742,GSM1184743,GSM1184744,GSM1184745,GSM1184746,GSM1184747,GSM1184748,GSM1184749,GSM1184750,GSM1184751,GSM1184752,GSM1184753,GSM1184754,GSM1184755,GSM1184756,GSM1184757,GSM1184758,GSM1184759,GSM1184760,GSM1184761,GSM1184762,GSM1184763,GSM1184764,GSM1184765,GSM1184766,GSM1184767,GSM1184768,GSM1184769,GSM1184770,GSM1184771,GSM1184772,GSM1184773,GSM1184774,GSM1184775,GSM1184776,GSM1184777,GSM1184778,GSM1184779,GSM1184780,GSM1184781,GSM1184782,GSM1184783,GSM1184784,GSM1184785,GSM1184786,GSM1184787,GSM1184788,GSM1184789,GSM1184790,GSM1184791,GSM1184792,GSM1184793,GSM1184794,GSM1184795,GSM1184796,GSM1184797,GSM1184798,GSM1184799,GSM1184800,GSM1184801,GSM1184802,GSM1184803,GSM1184804,GSM1184805,GSM1184806,GSM1184807,GSM1184808,GSM1184809,GSM1184810,GSM1184811,GSM1184812,GSM1184813,GSM1184814,GSM1184815,GSM1184816,GSM1184817,GSM1184818,GSM1184819,GSM1184820,GSM1184821,GSM1184822,GSM1184823,GSM1184824,GSM1184825,GSM1184826,GSM1184827,GSM1184828,GSM1184829,GSM1184830,GSM1184831,GSM1184832,GSM1184833,GSM1184834,GSM1184835,GSM1184836,GSM1184837,GSM1184838,GSM1184839,GSM1184840,GSM1184841,GSM1184842,GSM1184843,GSM1184844,GSM1184845,GSM1184846,GSM1184847,GSM1184848,GSM1184849,GSM1184850,GSM1184851,GSM1184852,GSM1184853,GSM1184854,GSM1184855,GSM1184856,GSM1184857,GSM1184858,GSM1184859,GSM1184860,GSM1184861,GSM1184862,GSM1184863,GSM1184864,GSM1184865,GSM1184866,GSM1184867,GSM1184868,GSM1184869,GSM1184870,GSM1184871,GSM1184872,GSM1184873,GSM1184874,GSM1184875,GSM1184876,GSM1184877,GSM1184878,GSM1184879,GSM1184880,GSM1184881,GSM1184882,GSM1184883,GSM1184884,GSM1184885,GSM1184886,GSM1184887,GSM1184888,GSM1184889,GSM1184890,GSM1184891,GSM1184892,GSM1184893,GSM1184894,GSM1184895
|
2 |
+
Glucocorticoid_Sensitivity,90.2096916857165,90.2096916857165,92.0660852718675,92.0660852718675,85.8770390662799,85.8770390662799,87.4945143923344,87.4945143923344,85.1993812425936,85.1993812425936,84.9616236229156,84.9616236229156,83.9341340611542,83.9341340611542,88.7663927292959,88.7663927292959,88.4126127755346,88.4126127755346,90.1302355511097,90.1302355511097,86.3038207243861,86.3038207243861,97.9389927348314,97.9389927348314,85.6565800452145,85.6565800452145,72.080026977723,72.080026977723,95.7902581814721,95.7902581814721,84.7169700775247,84.7169700775247,97.2440363125325,97.2440363125325,98.6965291984436,98.6965291984436,96.3897437049292,96.3897437049292,93.7864779279733,93.7864779279733,88.9409584548941,88.9409584548941,95.2180128029044,95.2180128029044,80.3262384967705,80.3262384967705,98.9664822965928,98.9664822965928,86.7141270837215,86.7141270837215,94.1342236284511,94.1342236284511,76.5646360533747,76.5646360533747,94.4880035822124,94.4880035822124,84.2040871593034,84.2040871593034,81.2524330708547,81.2524330708547,75.0377332194718,75.0377332194718,103.111196853422,103.111196853422,93.7264007046898,93.7264007046898,98.4358920138007,98.4358920138007,91.1219245341963,91.1219245341963,89.7952307882158,89.7952307882158,100.164196369324,100.164196369324,92.2726878044167,92.2726878044167,83.653786832453,83.653786832453,85.4308536742686,85.4308536742686,95.9867474842918,95.9867474842918,97.4697626834784,97.4697626834784,87.1103581762748,87.1103581762748,106.335980304372,106.335980304372,95.0323274416373,95.0323274416373,93.2741255092367,93.2741255092367,88.0517452462257,88.0517452462257,92.7703808066373,92.7703808066373,90.2966860598886,90.2966860598886,90.2966860598886,87.6826035548426,87.6826035548426,87.6826035548426,110.820589380024,110.820589380024,110.820589380024,91.2861567746556,91.2861567746556,90.9575303422268,90.9575303422268,99.844023580098,99.844023580098,92.4380615886291,92.4380615886291,90.6279285533303,90.6279285533303,90.6279285533303,95.4061019654126,95.4061019654126,95.4061019654126,102.574377860977,102.574377860977,102.574377860977,83.3617762565561,83.3617762565561,92.9375020882722,92.9375020882722,83.056592777649,83.056592777649,101.239617979237,101.239617979237,86.5108726528178,86.5108726528178,87.8682889161097,87.8682889161097,89.9631142694748,89.9631142694748,95.5967828443558,95.5967828443558,94.3102962675651,94.3102962675651,97.0235772914671,97.0235772914671,94.6674807225407,94.6674807225407,86.0926581231368,86.0926581231368,107.862883138275,107.862883138275,82.7364199884225,82.7364199884225,88.2331356352063,88.2331356352063,93.614568433444,93.614568433444,103.717527073529,103.717527073529,103.717527073529,91.4503081788735,91.4503081788735,91.4503081788735,89.4567969526773,89.4567969526773,89.4567969526773,91.9430860155202,91.9430860155202,92.1077238348243,92.1077238348243,100.50157318001,100.50157318001,77.6379974012028,77.6379974012028,99.246829525294,99.246829525294,93.4438194050697,93.4438194050697,80.8101665274758,80.8101665274758,93.1053855695312,93.1053855695312
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE50012.csv
ADDED
@@ -0,0 +1,4 @@
|
|
|
|
|
|
|
|
|
|
|
1 |
+
,GSM832137,GSM832138,GSM832139,GSM832140,GSM832141,GSM832142,GSM832143,GSM832144,GSM832145,GSM832146,GSM832147,GSM832148,GSM832149,GSM832150,GSM832151,GSM832152,GSM832153,GSM832154,GSM832155,GSM832156,GSM832157,GSM832158,GSM832159,GSM832160,GSM832161,GSM832162,GSM832163,GSM832164,GSM832165,GSM832166,GSM832167,GSM832168,GSM832169,GSM832170,GSM832171,GSM832172,GSM832173,GSM832174,GSM832175,GSM832176,GSM832177,GSM832178,GSM832179,GSM832180,GSM832181,GSM832182,GSM832183,GSM832184,GSM1212354,GSM1212355,GSM1212356,GSM1212357,GSM1212358,GSM1212359,GSM1212360,GSM1212361,GSM1212362,GSM1212363,GSM1212364,GSM1212365,GSM1212366,GSM1212367,GSM1212368,GSM1212369,GSM1212370,GSM1212371,GSM1212372,GSM1212373,GSM1212374,GSM1212375,GSM1212376,GSM1212377
|
2 |
+
Glucocorticoid_Sensitivity,89.43486,89.43486,89.43486,89.43486,95.88507,95.88507,95.88507,95.88507,95.22036,95.22036,95.22036,95.22036,92.86704,92.86704,92.86704,92.86704,93.71633,93.71633,93.71633,93.71633,96.76962,96.76962,96.76962,96.76962,88.55031,88.55031,88.55031,88.55031,90.09957,90.09957,90.09957,90.09957,94.17097,94.17097,94.17097,94.17097,86.97089,86.97089,86.97089,86.97089,98.34904,98.34904,98.34904,98.34904,91.14896,91.14896,91.14896,91.14896,8.0,24.0,8.0,24.0,8.0,24.0,8.0,24.0,8.0,24.0,8.0,24.0,24.0,8.0,24.0,8.0,24.0,8.0,24.0,8.0,24.0,8.0,24.0,8.0
|
3 |
+
Age,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,44.15,44.15,24.72,24.72,32.38,32.38,20.38,20.38,21.24,21.24,22.54,22.54,26.14,26.14,21.56,21.56,21.99,21.99,26.77,26.77,23.59,23.59,23.48,23.48
|
4 |
+
Gender,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,0.0,0.0,0.0,0.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE57795.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1388640,GSM1388641,GSM1388642,GSM1388643,GSM1388644,GSM1388645,GSM1388646,GSM1388647,GSM1388648,GSM1388649,GSM1388650,GSM1388651,GSM1388652,GSM1388653,GSM1388654,GSM1388655,GSM1388656,GSM1388657,GSM1388658,GSM1388659,GSM1388660,GSM1388661,GSM1388662,GSM1388663,GSM1388664,GSM1388665,GSM1388666,GSM1388667,GSM1388668,GSM1388669,GSM1388670,GSM1388671,GSM1388672,GSM1388673,GSM1388674,GSM1388675,GSM1388676,GSM1388677,GSM1388678,GSM1388679,GSM1388680,GSM1388681,GSM1388682,GSM1388683,GSM1388684,GSM1388685,GSM1388686,GSM1388687,GSM1388688,GSM1388689,GSM1388690,GSM1388691,GSM1388692,GSM1388693,GSM1388694,GSM1388695,GSM1388696,GSM1388697
|
2 |
+
Glucocorticoid_Sensitivity,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE58715.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1417252,GSM1417253,GSM1417254,GSM1417255,GSM1417256,GSM1417257,GSM1417258,GSM1417259,GSM1417260,GSM1417261,GSM1417262,GSM1417263,GSM1417264,GSM1417265,GSM1417266,GSM1417267,GSM1417268,GSM1417269,GSM1417270,GSM1417271,GSM1417272,GSM1417273,GSM1417274,GSM1417275,GSM1417276,GSM1417277,GSM1417278,GSM1417279,GSM1417280,GSM1417281,GSM1417282,GSM1417283,GSM1417284,GSM1417285,GSM1417286,GSM1417287,GSM1417288,GSM1417289,GSM1417290,GSM1417291
|
2 |
+
Glucocorticoid_Sensitivity,1.0,0.0,0.0,0.0,0.0,1.0,0.0,0.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,0.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE65645.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1602365,GSM1602366,GSM1602367,GSM1602368,GSM1602369,GSM1602370,GSM1602371,GSM1602372,GSM1602373,GSM1602374,GSM1602375,GSM1602376,GSM1602377,GSM1602378,GSM1602379,GSM1602380,GSM1602381,GSM1602382,GSM1602383,GSM1602384,GSM1602385,GSM1602386,GSM1602387,GSM1602388,GSM1602389,GSM1602390,GSM1602391,GSM1602392,GSM1602393,GSM1602394,GSM1602395,GSM1602396,GSM1602397,GSM1602398,GSM1602399,GSM1602400,GSM1602401,GSM1602402,GSM1602403,GSM1602404,GSM1602405,GSM1602406,GSM1602407,GSM1602408
|
2 |
+
Glucocorticoid_Sensitivity,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,0.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0,1.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/GSE66705.csv
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
,GSM1629982,GSM1629983,GSM1629984,GSM1629985,GSM1629986,GSM1629987,GSM1629988,GSM1629989,GSM1629990,GSM1629991,GSM1629992,GSM1629993,GSM1629994,GSM1629995,GSM1629996,GSM1629997,GSM1629998,GSM1629999,GSM1630000,GSM1630001,GSM1630002,GSM1630003,GSM1630004,GSM1630005,GSM1630006,GSM1630007,GSM1630008,GSM1630009,GSM1630010,GSM1630011,GSM1630012,GSM1630013,GSM1630014,GSM1630015,GSM1630016,GSM1630017,GSM1630018,GSM1630019,GSM1630020,GSM1630021,GSM1630022,GSM1630023,GSM1630024,GSM1630025,GSM1630026,GSM1630027,GSM1630028,GSM1630029,GSM1630030,GSM1630031,GSM1630032,GSM1630033,GSM1630034,GSM1630035,GSM1630036,GSM1630037,GSM1630038,GSM1630039,GSM1630040,GSM1630041,GSM1630042,GSM1630043,GSM1630044,GSM1630045,GSM1630046,GSM1630047,GSM1630048,GSM1630049,GSM1630050,GSM1630051,GSM1630052,GSM1630053,GSM1630054,GSM1630055,GSM1630056,GSM1630057,GSM1630058,GSM1630059,GSM1630060,GSM1630061,GSM1630062,GSM1630063,GSM1630064,GSM1630065,GSM1630066,GSM1630067,GSM1630068,GSM1630069,GSM1630070,GSM1630071,GSM1630072,GSM1630073,GSM1630074,GSM1630075,GSM1630076,GSM1630077,GSM1630078,GSM1630079,GSM1630080,GSM1630081,GSM1630082,GSM1630083,GSM1630084,GSM1630085,GSM1630086,GSM1630087,GSM1630088,GSM1630089,GSM1630090,GSM1630091,GSM1630092,GSM1630093,GSM1630094,GSM1630095,GSM1630096,GSM1630097,GSM1630098,GSM1630099,GSM1630100,GSM1630101,GSM1630102,GSM1630103,GSM1630104,GSM1630105,GSM1630106,GSM1630107,GSM1630108,GSM1630109,GSM1630110,GSM1630111,GSM1630112,GSM1630113,GSM1630114,GSM1630115,GSM1630116,GSM1630117,GSM1630118,GSM1630119,GSM1630120,GSM1630121,GSM1630122,GSM1630123,GSM1630124,GSM1630125,GSM1630126,GSM1630127,GSM1630128,GSM1630129,GSM1630130,GSM1630131,GSM1630132,GSM1630133,GSM1630135,GSM1630137,GSM1630139,GSM1630142,GSM1630144,GSM1630146,GSM1630149,GSM1630151,GSM1630154,GSM1630156,GSM1630158,GSM1630160,GSM1630162,GSM1630163,GSM1630164,GSM1630165,GSM1630166,GSM1630167,GSM1630168
|
2 |
+
Glucocorticoid_Sensitivity,,,,,0.0,,0.0,0.0,,,,,,1.0,,0.0,,,0.0,1.0,0.0,,,,,,,,1.0,1.0,,,0.0,,1.0,,,0.0,,1.0,,,0.0,1.0,0.0,1.0,,1.0,1.0,,,0.0,,,,,1.0,0.0,,,,,,0.0,,1.0,0.0,1.0,,,,0.0,0.0,0.0,,,1.0,,0.0,,1.0,1.0,0.0,,0.0,,1.0,1.0,1.0,0.0,,1.0,0.0,,,1.0,,,,0.0,,1.0,,0.0,0.0,,,,,1.0,,,1.0,1.0,0.0,0.0,0.0,0.0,,1.0,0.0,1.0,1.0,0.0,0.0,1.0,1.0,0.0,1.0,1.0,,1.0,1.0,0.0,0.0,1.0,1.0,1.0,,1.0,1.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,0.0,1.0,0.0,1.0,0.0,1.0,1.0,0.0,1.0,1.0,1.0,0.0,0.0,1.0,0.0,0.0,0.0,0.0,1.0,0.0
|
p3/preprocess/Glucocorticoid_Sensitivity/clinical_data/TCGA.csv
ADDED
@@ -0,0 +1,93 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
sampleID,Glucocorticoid_Sensitivity,Age,Gender
|
2 |
+
TCGA-OR-A5J1-01,1,58,1
|
3 |
+
TCGA-OR-A5J2-01,1,44,0
|
4 |
+
TCGA-OR-A5J3-01,1,23,0
|
5 |
+
TCGA-OR-A5J4-01,1,23,0
|
6 |
+
TCGA-OR-A5J5-01,1,30,1
|
7 |
+
TCGA-OR-A5J6-01,1,29,0
|
8 |
+
TCGA-OR-A5J7-01,1,30,0
|
9 |
+
TCGA-OR-A5J8-01,1,66,1
|
10 |
+
TCGA-OR-A5J9-01,1,22,0
|
11 |
+
TCGA-OR-A5JA-01,1,53,0
|
12 |
+
TCGA-OR-A5JB-01,1,52,1
|
13 |
+
TCGA-OR-A5JC-01,1,37,1
|
14 |
+
TCGA-OR-A5JD-01,1,57,0
|
15 |
+
TCGA-OR-A5JE-01,1,17,0
|
16 |
+
TCGA-OR-A5JF-01,1,69,0
|
17 |
+
TCGA-OR-A5JG-01,1,61,1
|
18 |
+
TCGA-OR-A5JH-01,1,32,0
|
19 |
+
TCGA-OR-A5JI-01,1,22,1
|
20 |
+
TCGA-OR-A5JJ-01,1,65,1
|
21 |
+
TCGA-OR-A5JK-01,1,49,1
|
22 |
+
TCGA-OR-A5JL-01,1,36,0
|
23 |
+
TCGA-OR-A5JM-01,1,25,0
|
24 |
+
TCGA-OR-A5JO-01,1,26,0
|
25 |
+
TCGA-OR-A5JP-01,1,40,1
|
26 |
+
TCGA-OR-A5JQ-01,1,26,0
|
27 |
+
TCGA-OR-A5JR-01,1,45,1
|
28 |
+
TCGA-OR-A5JS-01,1,65,0
|
29 |
+
TCGA-OR-A5JT-01,1,65,0
|
30 |
+
TCGA-OR-A5JU-01,1,58,0
|
31 |
+
TCGA-OR-A5JV-01,1,55,1
|
32 |
+
TCGA-OR-A5JW-01,1,47,1
|
33 |
+
TCGA-OR-A5JX-01,1,50,1
|
34 |
+
TCGA-OR-A5JY-01,1,68,0
|
35 |
+
TCGA-OR-A5JZ-01,1,60,1
|
36 |
+
TCGA-OR-A5K0-01,1,69,0
|
37 |
+
TCGA-OR-A5K1-01,1,48,1
|
38 |
+
TCGA-OR-A5K2-01,1,32,0
|
39 |
+
TCGA-OR-A5K3-01,1,53,1
|
40 |
+
TCGA-OR-A5K4-01,1,64,0
|
41 |
+
TCGA-OR-A5K5-01,1,59,0
|
42 |
+
TCGA-OR-A5K6-01,1,56,0
|
43 |
+
TCGA-OR-A5K8-01,1,39,1
|
44 |
+
TCGA-OR-A5K9-01,1,61,0
|
45 |
+
TCGA-OR-A5KB-01,1,61,0
|
46 |
+
TCGA-OR-A5KO-01,1,39,0
|
47 |
+
TCGA-OR-A5KP-01,1,45,0
|
48 |
+
TCGA-OR-A5KQ-01,1,20,0
|
49 |
+
TCGA-OR-A5KS-01,1,72,1
|
50 |
+
TCGA-OR-A5KT-01,1,44,0
|
51 |
+
TCGA-OR-A5KU-01,1,37,0
|
52 |
+
TCGA-OR-A5KV-01,1,17,0
|
53 |
+
TCGA-OR-A5KW-01,1,55,0
|
54 |
+
TCGA-OR-A5KX-01,1,25,0
|
55 |
+
TCGA-OR-A5KY-01,1,23,0
|
56 |
+
TCGA-OR-A5KZ-01,1,42,1
|
57 |
+
TCGA-OR-A5L1-01,1,37,0
|
58 |
+
TCGA-OR-A5L2-01,1,83,0
|
59 |
+
TCGA-OR-A5L3-01,1,67,0
|
60 |
+
TCGA-OR-A5L4-01,1,48,0
|
61 |
+
TCGA-OR-A5L5-01,1,77,0
|
62 |
+
TCGA-OR-A5L6-01,1,60,1
|
63 |
+
TCGA-OR-A5L8-01,1,36,0
|
64 |
+
TCGA-OR-A5L9-01,1,53,0
|
65 |
+
TCGA-OR-A5LA-01,1,52,0
|
66 |
+
TCGA-OR-A5LB-01,1,59,1
|
67 |
+
TCGA-OR-A5LC-01,1,71,0
|
68 |
+
TCGA-OR-A5LD-01,1,52,1
|
69 |
+
TCGA-OR-A5LE-01,1,14,1
|
70 |
+
TCGA-OR-A5LF-01,1,74,0
|
71 |
+
TCGA-OR-A5LG-01,1,46,1
|
72 |
+
TCGA-OR-A5LH-01,1,36,0
|
73 |
+
TCGA-OR-A5LI-01,1,42,0
|
74 |
+
TCGA-OR-A5LJ-01,1,54,0
|
75 |
+
TCGA-OR-A5LK-01,1,62,1
|
76 |
+
TCGA-OR-A5LL-01,1,75,0
|
77 |
+
TCGA-OR-A5LM-01,1,23,1
|
78 |
+
TCGA-OR-A5LN-01,1,31,0
|
79 |
+
TCGA-OR-A5LO-01,1,61,0
|
80 |
+
TCGA-OR-A5LP-01,1,37,0
|
81 |
+
TCGA-OR-A5LR-01,1,30,0
|
82 |
+
TCGA-OR-A5LS-01,1,34,0
|
83 |
+
TCGA-OR-A5LT-01,1,57,1
|
84 |
+
TCGA-OU-A5PI-01,1,53,0
|
85 |
+
TCGA-P6-A5OF-01,1,55,0
|
86 |
+
TCGA-P6-A5OG-01,1,45,0
|
87 |
+
TCGA-P6-A5OH-01,1,59,0
|
88 |
+
TCGA-PA-A5YG-01,1,51,1
|
89 |
+
TCGA-PK-A5H8-01,1,42,1
|
90 |
+
TCGA-PK-A5H9-01,1,27,0
|
91 |
+
TCGA-PK-A5HA-01,1,63,1
|
92 |
+
TCGA-PK-A5HB-01,1,63,1
|
93 |
+
TCGA-PK-A5HC-01,1,44,0
|