File size: 5,397 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Glucocorticoid_Sensitivity"
cohort = "GSE32962"
# Input paths
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE32962"
# Output paths
out_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/GSE32962.csv"
out_gene_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/gene_data/GSE32962.csv"
out_clinical_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/clinical_data/GSE32962.csv"
json_path = "./output/preprocess/3/Glucocorticoid_Sensitivity/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# Based on series title and summary mentioning expression profiles, this is gene expression data
is_gene_available = True
# 2.1. Data Availability
# Trait (prednisolone sensitivity) is in row 4
trait_row = 4
# Age info only indicates <1 year for all samples, so constant
age_row = None
# Gender info not available
gender_row = None
# 2.2. Data Type Conversion Functions
def convert_trait(value: str) -> int:
"""Convert prednisolone sensitivity to binary (0=sensitive, 1=resistant)"""
if not value or ':' not in value:
return None
value = value.split(':')[1].strip().lower()
if 'resistant' in value:
return 1
elif 'sensitive' in value:
return 0
return None
def convert_age(value: str) -> float:
"""Not used but defined for completeness"""
return None
def convert_gender(value: str) -> int:
"""Not used but defined for completeness"""
return None
# 3. Save metadata
validate_and_save_cohort_info(
is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None)
)
# 4. Extract clinical features
clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview data
preview = preview_df(clinical_df)
print(preview)
# Save clinical data
os.makedirs(os.path.dirname(out_clinical_data_file), exist_ok=True)
clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These identifiers are Affymetrix probe IDs (e.g. '1007_s_at'), not gene symbols
# They need to be mapped to standardized gene symbols for analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# Get gene mapping from annotation data
# 'ID' column contains probe IDs matching genetic_data index
# 'Gene Symbol' column contains gene symbols
mapping_data = get_gene_mapping(gene_annotation, 'ID', 'Gene Symbol')
# Apply gene mapping to convert probe data to gene data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Verify gene data format
print("\nFirst 5 genes and their first 3 expression values:")
print(gene_data.iloc[:5, :3])
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Gene expression data from glucocorticoid sensitivity study."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |