File size: 5,940 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Glucocorticoid_Sensitivity"
cohort = "GSE33649"
# Input paths
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE33649"
# Output paths
out_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/GSE33649.csv"
out_gene_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/gene_data/GSE33649.csv"
out_clinical_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/clinical_data/GSE33649.csv"
json_path = "./output/preprocess/3/Glucocorticoid_Sensitivity/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# Yes, this dataset contains gene expression data as it studies transcriptome-wide response
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 3 # LGS is recorded in row 3
age_row = 6 # Age is recorded in row 6
gender_row = 5 # Gender is recorded in row 5
# 2.2 Data Type Conversion Functions
def convert_trait(x: str) -> Optional[float]:
"""Convert lymphocyte GC sensitivity values to float"""
try:
# Extract numeric value after the colon
value = x.split(': ')[1]
return float(value)
except:
return None
def convert_age(x: str) -> Optional[float]:
"""Convert age values to float"""
try:
# Extract numeric value after the colon
value = x.split(': ')[1]
return float(value)
except:
return None
def convert_gender(x: str) -> Optional[int]:
"""Convert gender to binary (0=female, 1=male)"""
try:
value = x.split(': ')[1].lower()
if value == 'female':
return 0
elif value == 'male':
return 1
return None
except:
return None
# 3. Save Metadata
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=(trait_row is not None))
# 4. Clinical Feature Extraction
if trait_row is not None:
# Extract features using the library function
clinical_features = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the extracted features
print("Preview of extracted clinical features:")
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These identifiers are ILMN_ Illumina probe IDs, not gene symbols
# They need to be mapped to human gene symbols for biological interpretation
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# 1. The 'ID' column in annotation matches probe IDs in expression data
# The 'Symbol' column contains gene symbols
prob_col = 'ID'
gene_col = 'Symbol'
# 2. Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)
# 3. Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Print first few gene symbols to verify mapping
print("\nFirst 20 gene symbols after mapping:")
print(gene_data.index[:20])
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Gene expression data from glucocorticoid sensitivity study."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |