File size: 5,528 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Glucocorticoid_Sensitivity"
cohort = "GSE48801"
# Input paths
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE48801"
# Output paths
out_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/GSE48801.csv"
out_gene_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/gene_data/GSE48801.csv"
out_clinical_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/clinical_data/GSE48801.csv"
json_path = "./output/preprocess/3/Glucocorticoid_Sensitivity/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# Based on the background information mentioning "transcriptome-wide response" and RNA extraction,
# this dataset contains gene expression data
is_gene_available = True
# 2.1 Data Availability
# Trait data (Glucocorticoid sensitivity) is available in row 1
trait_row = 1
# Age data is not available
age_row = None
# Gender data is not available
gender_row = None
# 2.2 Data Type Conversion Functions
def convert_trait(value):
try:
# Extract numeric value after "inhibition by dex):"
value = value.split("inhibition by dex):")[-1].strip()
return float(value)
except:
return None
def convert_age(value):
# Not needed since age data is not available
return None
def convert_gender(value):
# Not needed since gender data is not available
return None
# 3. Save Metadata
# trait_row is not None, so trait data is available
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False, cohort=cohort, info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Extract and save clinical features since trait data is available
selected_clinical_df = geo_select_clinical_features(
clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender
)
# Preview the processed clinical data
preview_result = preview_df(selected_clinical_df)
print(preview_result)
# Save clinical data
selected_clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# Based on the observation of 'ILMN_' prefix, these are Illumina probe IDs
# which need to be mapped to gene symbols for standardization and interpretation
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# Get gene mapping data from annotation
# 'ID' in the gene expression data matches 'ID' in the gene annotation
# 'Symbol' contains the gene symbols we want to map to
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Preview first few rows to verify the mapping
print("\nFirst few rows of mapped gene expression data:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Gene expression data from glucocorticoid sensitivity study."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |