File size: 6,046 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Glucocorticoid_Sensitivity"
cohort = "GSE57795"
# Input paths
in_trait_dir = "../DATA/GEO/Glucocorticoid_Sensitivity"
in_cohort_dir = "../DATA/GEO/Glucocorticoid_Sensitivity/GSE57795"
# Output paths
out_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/GSE57795.csv"
out_gene_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/gene_data/GSE57795.csv"
out_clinical_data_file = "./output/preprocess/3/Glucocorticoid_Sensitivity/clinical_data/GSE57795.csv"
json_path = "./output/preprocess/3/Glucocorticoid_Sensitivity/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# Yes, it contains gene expression data using Illumina HumanWG-6 BeadChips
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability
trait_row = 5 # Dexamethasone sensitivity data is in row 5
age_row = None # No patient age data available
gender_row = None # No gender data available
# 2.2 Data Type Conversion Functions
def convert_trait(value):
if not isinstance(value, str):
return None
value = value.lower()
if 'sensitive' in value:
return 1 # Good responders coded as 1
elif 'resistant' in value:
return 0 # Poor responders coded as 0
return None
def convert_age(value):
return None # Not needed since age data not available
def convert_gender(value):
return None # Not needed since gender data not available
# 3. Save Metadata
# Initial filtering - trait data is available (trait_row is not None)
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we proceed with clinical feature extraction
clinical_features = geo_select_clinical_features(clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
preview_result = preview_df(clinical_features)
print("Preview of clinical features:")
print(preview_result)
# Save clinical features
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These are Illumina probe IDs (starting with "ILMN_"), not human gene symbols
# They need to be mapped to gene symbols for interpretable analysis
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first few values
preview_dict = preview_df(gene_annotation)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# From examining the output, we can see:
# - Gene expression data uses IDs like 'ILMN_1343291'
# - In gene annotation, 'ID' column contains the same ILMN identifiers
# - 'Symbol' column contains the gene symbols we want to map to
# Get mapping between probe IDs and gene symbols
gene_mapping = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Symbol')
# Apply mapping to convert probe-level data to gene expression data
gene_data = apply_gene_mapping(genetic_data, gene_mapping)
# Preview converted gene expression data
print("\nFirst few genes and their expression values:")
print(gene_data.head())
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Gene expression data from glucocorticoid sensitivity study."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |