File size: 2,065 Bytes
54d4d57
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "HIV_Resistance"
cohort = "GSE117748"

# Input paths
in_trait_dir = "../DATA/GEO/HIV_Resistance"
in_cohort_dir = "../DATA/GEO/HIV_Resistance/GSE117748"

# Output paths
out_data_file = "./output/preprocess/3/HIV_Resistance/GSE117748.csv"
out_gene_data_file = "./output/preprocess/3/HIV_Resistance/gene_data/GSE117748.csv"
out_clinical_data_file = "./output/preprocess/3/HIV_Resistance/clinical_data/GSE117748.csv"
json_path = "./output/preprocess/3/HIV_Resistance/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# This is a miRNA study on cell lines (based on the title and sample characteristics)
is_gene_available = False 

# 2.1 Data Availability
# From sample characteristics, no human trait, age or gender data available
trait_row = None
age_row = None  
gender_row = None

# 2.2 Data Type Conversion functions (not used but defined for completeness)
def convert_trait(x):
    return None

def convert_age(x):
    return None
    
def convert_gender(x):
    return None

# 3. Save Metadata
# Validate and save cohort info - initial filtering 
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=False  # trait_row is None
)

# 4. Clinical Feature Extraction
# Skip since trait_row is None