File size: 5,774 Bytes
ee5a411 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 |
# Path Configuration
from tools.preprocess import *
# Processing context
trait = "Head_and_Neck_Cancer"
cohort = "GSE148320"
# Input paths
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer"
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE148320"
# Output paths
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE148320.csv"
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE148320.csv"
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE148320.csv"
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json"
# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)
# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)
# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)
# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")
# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
print(f"{row}:")
print(f" {values}")
print()
# 1. Gene Expression Data Availability
# The series appears to be microarray gene expression data from oral tumor xenografts
# therefore it contains gene expression data
is_gene_available = True
# 2. Variable Availability and Data Type Conversion
# 2.1 Trait (Diet treatment with palmitic acid (PA)) from key 4
trait_row = 4 # Diet status available
# "PA-rich diet" should be considered the positive case as it was found to promote metastasis
def convert_trait(x):
if ':' in str(x):
val = x.split(':')[1].strip()
if 'PA-rich' in val:
return 1
elif 'control' in val:
return 0
return None
# Age/Gender not available - these are xenograft samples
age_row = None
def convert_age(x):
return None
gender_row = None
def convert_gender(x):
return None
# 3. Save metadata - initial filtering
is_trait_available = trait_row is not None
validate_and_save_cohort_info(is_final=False,
cohort=cohort,
info_path=json_path,
is_gene_available=is_gene_available,
is_trait_available=is_trait_available)
# 4. Clinical Feature Extraction
# Since trait_row is not None, we need to extract features
clinical_features = geo_select_clinical_features(clinical_df=clinical_data,
trait=trait,
trait_row=trait_row,
convert_trait=convert_trait,
age_row=age_row,
convert_age=convert_age,
gender_row=gender_row,
convert_gender=convert_gender)
# Preview the extracted features
print(preview_df(clinical_features))
# Save to CSV
clinical_features.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)
# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These identifiers appear to be Affymetrix probe IDs rather than human gene symbols
# Affymetrix IDs like "11715100_at" need to be mapped to official gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)
# Preview column names and first 20 values
preview_dict = preview_df(gene_annotation, n=20)
print("Column names and preview values:")
for col, values in preview_dict.items():
print(f"\n{col}:")
print(values)
# Extract gene mapping from annotation data
# From previewing the annotation data, we can see that:
# 'ID' column matches the probe IDs in gene expression data
# 'Gene Symbol' column contains the gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col='ID', gene_col='Gene Symbol')
# Apply mapping to convert probe-level expression to gene-level expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)
# Save the processed gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)
# Read the processed clinical data file
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)
# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)
# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)
# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)
# Validate data quality and save cohort info
note = "Gene expression data from oral leukoplakia study comparing proliferative vs localized types."
is_usable = validate_and_save_cohort_info(
is_final=True,
cohort=cohort,
info_path=json_path,
is_gene_available=True,
is_trait_available=True,
is_biased=is_biased,
df=linked_data,
note=note
)
# Save linked data if usable
if is_usable:
os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
linked_data.to_csv(out_data_file)
else:
print(f"Dataset {cohort} did not pass quality validation and will not be saved.") |