File size: 5,430 Bytes
ee5a411
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
# Path Configuration
from tools.preprocess import *

# Processing context
trait = "Head_and_Neck_Cancer"
cohort = "GSE151179"

# Input paths
in_trait_dir = "../DATA/GEO/Head_and_Neck_Cancer"
in_cohort_dir = "../DATA/GEO/Head_and_Neck_Cancer/GSE151179"

# Output paths
out_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/GSE151179.csv"
out_gene_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/gene_data/GSE151179.csv"
out_clinical_data_file = "./output/preprocess/3/Head_and_Neck_Cancer/clinical_data/GSE151179.csv"
json_path = "./output/preprocess/3/Head_and_Neck_Cancer/cohort_info.json"

# Get relevant file paths
soft_file_path, matrix_file_path = geo_get_relevant_filepaths(in_cohort_dir)

# Extract background info and clinical data from the matrix file
background_info, clinical_data = get_background_and_clinical_data(matrix_file_path)

# Get dictionary of unique values per row in clinical data
unique_values_dict = get_unique_values_by_row(clinical_data)

# Print background info
print("Background Information:")
print("-" * 50)
print(background_info)
print("\n")

# Print clinical data unique values
print("Sample Characteristics:")
print("-" * 50)
for row, values in unique_values_dict.items():
    print(f"{row}:")
    print(f"  {values}")
    print()
# 1. Gene Expression Data Availability
# Yes - Series title and description indicate gene expression data using Human Clariom S Assay
is_gene_available = True

# 2. Variable Availability and Data Type Conversion
# 2.1 Data Availability 
# Trait (RAI response) is recorded in row 4
trait_row = 4
# Age and gender are not recorded in sample characteristics
age_row = None 
gender_row = None

# 2.2 Data Type Conversion
def convert_trait(value: str) -> int:
    """Convert RAI response to binary (0=Avid, 1=Refractory)"""
    if not value or 'patient rai responce:' not in value:
        return None
    value = value.split(': ')[1].strip()
    if value == 'Avid':
        return 0
    elif value == 'Refractory':
        return 1
    return None

def convert_age(value: str) -> float:
    """Convert age to float"""
    return None

def convert_gender(value: str) -> int:
    """Convert gender to binary"""
    return None

# 3. Save metadata
validate_and_save_cohort_info(
    is_final=False,
    cohort=cohort,
    info_path=json_path,
    is_gene_available=is_gene_available,
    is_trait_available=(trait_row is not None)
)

# 4. Clinical Feature Extraction
clinical_df = geo_select_clinical_features(
    clinical_df=clinical_data,
    trait=trait,
    trait_row=trait_row,
    convert_trait=convert_trait,
    age_row=age_row,
    convert_age=convert_age,
    gender_row=gender_row,
    convert_gender=convert_gender
)

print("Preview of extracted clinical features:")
print(preview_df(clinical_df))

clinical_df.to_csv(out_clinical_data_file)
# Extract gene expression data
genetic_data = get_genetic_data(matrix_file_path)

# Print first 20 probe IDs
print("First 20 probe IDs:")
print(genetic_data.index[:20])
# These look like probe/transcript IDs from microarray/sequencing platforms,
# not standard human gene symbols which are typically alphabetic like "BRCA1"
# The numerical format indicates these need to be mapped to gene symbols
requires_gene_mapping = True
# Extract gene annotation from SOFT file
gene_annotation = get_gene_annotation(soft_file_path)

# Preview column names and first 20 values
preview_dict = preview_df(gene_annotation, n=20)
print("Column names and preview values:")
for col, values in preview_dict.items():
    print(f"\n{col}:")
    print(values)
# The IDs in gene expression data look like numbers (e.g. 23064070)
# In gene annotation, 'ID' column has the matching identifiers 
# The SPOT_ID.1 column contains gene info with symbols
prob_col = 'ID'
gene_col = 'SPOT_ID.1'

# Get mapping between probe IDs and gene symbols
mapping_data = get_gene_mapping(gene_annotation, prob_col, gene_col)

# Convert probe expression to gene expression
gene_data = apply_gene_mapping(genetic_data, mapping_data)

# Save the gene data
gene_data.to_csv(out_gene_data_file)
# 1. Normalize gene symbols and save normalized gene data
normalized_gene_data = normalize_gene_symbols_in_index(gene_data)
os.makedirs(os.path.dirname(out_gene_data_file), exist_ok=True)
normalized_gene_data.to_csv(out_gene_data_file)

# Read the processed clinical data file 
clinical_df = pd.read_csv(out_clinical_data_file, index_col=0)

# Link clinical and genetic data using the normalized gene data
linked_data = geo_link_clinical_genetic_data(clinical_df, normalized_gene_data)

# Handle missing values systematically
linked_data = handle_missing_values(linked_data, trait)

# Detect bias in trait and demographic features, remove biased demographic features
is_biased, linked_data = judge_and_remove_biased_features(linked_data, trait)

# Validate data quality and save cohort info
note = "Gene expression data from oral leukoplakia study comparing proliferative vs localized types."
is_usable = validate_and_save_cohort_info(
    is_final=True,
    cohort=cohort, 
    info_path=json_path,
    is_gene_available=True,
    is_trait_available=True,
    is_biased=is_biased,
    df=linked_data,
    note=note
)

# Save linked data if usable
if is_usable:
    os.makedirs(os.path.dirname(out_data_file), exist_ok=True)
    linked_data.to_csv(out_data_file)
else:
    print(f"Dataset {cohort} did not pass quality validation and will not be saved.")